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Skill learning depends on retaining memories of skill-use

experiences over time. These memories need to be robust

against interference and therefore depend on consolidation.

Further, skills must generalize beyond the learning experiences

to be useful in novel but related situations. We review the role of

sleep in the consolidation of skill learning, along with research

findings that sleep: (1) reduces the effects of interference on

skill learning, (2) protects against future interference with skill

learning, (3) aids in the abstraction and generalization of skill

learning. We discuss theories of sleep consolidation in terms of

putative neural mechanisms and describe the key paradigms

and questions in sleep research.
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Introduction
We sleep (if lucky) for a substantial portion of our lives,

but the role of sleep in mind and biology is still not well

understood [1]. Although there has been a longstanding

interest in the role of sleep in learning, ranging from

studies of frozen cockroaches [2] to soccer skills [3] to

studies of dreaming (cf. [4]), there are many unanswered

questions, such as how sleep aids learning and memory.

One of the primary theories of learning and memory is

that the learning of one thing makes it harder to learn

something different but similar afterwards, and learning

something new can interfere with the prior learning —

called proactive and retroactive interference (see [5]).

Although both proactive and retroactive interference

can be classified as either informational (via the overlap

of content: A maps to B and A also maps to C) or

processing oriented (via mental exertion or memory
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formation) [5], for the purposes of the present discussion

such a distinction is less relevant than the recognition that

(1) prior learning and subsequent experiences can have

adverse effects on learning a task and (2) that sleep plays a

role in mitigating such interference [6]. However, it has

been demonstrated that conscious framing — i.e., the way

the participant understands the task or expectations about

the task — can affect both interference effects in motor

sequence learning and sleep consolidation [7]. Under-

standing the mechanisms of interference may ultimately

be linked to a clearer understanding of sleep consolidation.

An early view of the function of sleep is that it aids

memory passively, simply because sleeping reduces

opportunities for interference from subsequent experi-

ence via the lack of consciously directed activity [8].

Research rejected this simple view of sleep (e.g., [9])

and replaced it with an alternative view that sleep actively

consolidates memories [10]. However, there are new

theories proposing different possible mechanisms operat-

ing during sleep to protect or consolidate memory [11].

One broad neural network view holds that sleep operates

to consolidate immediate encodings of experience based

on some specific brain regions (e.g., hippocampus) into

more stable neocortical representations [12] whereas

other theories focus on changes in the synaptic connec-

tions among neurons [13].

A paradigmatic shift from the historical focus on explicit

memories encoding information about specific events or

experiences (remembering word lists or lunch yesterday)

to more implicit memories demonstrating learned perfor-

mance, such as playing golf or piano [14] has been

important to understanding the role of sleep in learning.

As in other approaches to memory research such as

neuropsychological patients like HM [15] or non-human

animal research [16] the distinction between declarative

memory (i.e., describable) and procedural or non-declar-

ative memory (i.e., skill learning, task learning) has pro-

vided different kinds of results. This shift from explicit

memory for experiences to non-verbal procedures (e.g.,

perceptual discrimination, motor sequences) however,

has changed a number of aspects of the learning situation.

These aspects primarily arise because procedural or non-

declarative memory tasks marked a shift from learning

many things (e.g., lists of words) to learning a single

simple task (e.g., repeated finger movements [17] or a

single visual pattern discrimination [18]). Given that non-

verbal, procedural skills like tennis or telegraphy develop

from experiences over time — over days or even years
www.sciencedirect.com
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[19], memories of these experiences must accrue to

support learning. Moreover, for skills to generalize to

new but related situations, skills must be abstracted from

specific experiences. Our view is that a skill is not simply

the learning of a single motor pattern (i.e., a sequence of

finger movements) or a single visual discrimination, but

instead is best conceptualized as a generalized capability

to perceive new patterns that share properties or to

produce new movement patterns under novel conditions

ranging from riding a bicycle to playing chess to becoming

a radiologist. But it is also important to note that while

declarative and procedural (skill-like) memories have

many identified differences, declarative memories are

not studied directly. The formation and retrieval of

declarative memories is strategic [20] and may be con-

ceptualized as procedural [21], and thus may itself be a

kind of skill.

Sleep consolidation of skills
The first studies that showed clear evidence of sleep-

dependent memory consolidation were studies of proce-

dural learning (e.g., see [22]) as opposed to declarative

memory formation. Learning to discriminate a single

visual pattern [23] and learning a single finger-tapping

motor sequence [24] showed benefits of sleep in terms of

post-sleep enhancements in performance. Indeed,

Walker [25] argued that sleep consolidation reflects

enhancement over baseline learning whereas time alone

can stabilize memory. However, this conclusion is con-

troversial and has been challenged [26–28].

The first clear demonstration that sleep stabilizes skill

learning came from training listeners to better understand

low-intelligibility computer generated speech in a task in

which the same word was never played twice [29�].
Training produced clear evidence of generalized learn-

ing. Over a waking retention period following training,

performance significantly dropped, presumably due to

interference. However, two clear demonstrations of sleep

consolidation were reported. If listeners were tested after

a retention period that included sleep, performance was

similar to that found immediately after training, suggest-

ing sleep restored skill performance that was initially lost

via interference. Moreover, if listeners slept before a wak-

ing retention period, their performance did not decline,

indicating that sleep protected against future interference-

related loss. Restoring apparent skill loss and protecting

against future skill loss after sleep was also found for

generalized sensory-motor learning in a first-person shooter

video game, where all the training and testing took place on

different visual games and environments [6].

These studies argued strongly that for generalized skill

acquisition, sleep does not enhance performance, but rather

reduces the effects of interference and protects learning

against future loss. Moreover, a comprehensive sleep con-

solidation study of learning a single finger-tapping sequence
www.sciencedirect.com 
[10] replicating prior motor-learning paradigms showed

sleep consolidation (contra [27]) that follows the same

pattern of protecting against interference — rather than

enhancement (contra [24]). Although a number of studies

report that sleep leads to performance enhancement

[23,24,30�,31,32�,33�], this conclusion has been ques-

tioned. At least in motor tasks, baseline levels of per-

formance may be suppressed [10,27,30�] giving the

appearance of post-sleep enhancement when there is

really only stabilization [27,28].

Although sleep may not produce enhancement of gener-

alized skill performance, it may be important to produce

generalization in skill learning. Training on a large,

diverse set of systematically related stimuli as opposed

to a small, repetitive set of systematically related stimuli

has been demonstrated to lead to greater generalized

learning and restoration of skill performance lost via

interference [34]. Although sleep performance restoration

does not occur following training on small, repetitive

training sets [34], small boosts in generalization are still

observed following sleep. Evidence of sleep-related gen-

eralization is part of a larger body of literature showing

that sleep does not merely aid memorization, but leads to

qualitative changes in memories, problem-solving, or task

performance. For example, sleep promotes insight [35],

aids in the development of abstracted representations of

learned piano pieces [36], increases the associative con-

nections among learned words [37], alters second-order

associations in learning patterns of speech [38], biases the

interpretation of ambiguous images [39�], and gives new

emotional attributes the ability to capture attention [40].

The commonality between these studies is the finding

that sleep promotes the formation of abstractions and

connections to previous knowledge that were not present

before sleep.

Evidence that non-human animals show similar perfor-

mance changes as a result of sleep [26] made it possible to

test how sleep restores learning due to loss from interfer-

ence. Training European starlings on two tasks in quick

succession resulted in clear proactive and retroactive inter-

ference, separately manifest in different conditions [30�].
Rather than reducing the memory of the secondary task to

bolster performance on the first, sleep restored perfor-

mance on both tasks. In other words, separate assessment

of the two tasks, a target task and an interfering task,

showed that the original task and the interfering task were

restored to original levels of baseline performance follow-

ing sleep. There was no trade-off in task performance

between the tasks — both benefited from sleep. Thus

sleep appears to reduce interference by reorganizing task

representations or the ways in which they are accessed.

In summary, sleep may play an important role in skill

acquisition through stabilization and generalization.

Skills practiced in one context can, following sleep,
Current Opinion in Behavioral Sciences 2018, 20:174–182



176 Habits and skills
generalize to new situations. If similar skills are learned

during the same waking day, sleep can serve to separate

and promote the stabilized learning of all skills in spite of

interference that might have occurred during learning.

Sleep stages and skill learning
The discovery of sleep stages (see Figure 1) and rapid eye

movement (REM) sleep [41] (Figure 1, Panel A) showed

that sleep is not homogeneous and varies over time.
Figure 1
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Scientific interest in REM — and its potential role in

learning — intensified with the evidence of an association

with dreaming and the resultant perception of REM as

the ‘psychologically active’ sleep stage [42]. However,

these results were questioned [4], and research shifted to

other stages.

Although some accounts still suggest REM is important

for memory consolidation [43–45], recent studies argue
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for the greater importance of slow wave activity (SWA) in

skill learning [46,47]. SWA occurs predominantly during

stage 3 NREM, which occurs in greater proportion earlier

in the night and is characterized by slow, high-amplitude

EEG oscillations. Low acetylcholine (ACh) levels in

hippocampus during SWA appear to be necessary for

memory stabilization during sleep, as blocking ACh

breakdown during SWA abolishes consolidation of such

memories [48]. This may explain why SWA is important

in learning, particularly (but not only) for declarative

memories (aging memory decline linked to SWA reduc-

tion [49]; electrical enhancement of SWA and memory

[50,51�]; auditory enhancement of SWA and memory [52];

localized SWA and implicit motor learning [31]).

Slow waves or ‘slow oscillations’ involve widespread

synchronous alternation between depolarized (high activ-

ity) and hyperpolarized (relatively silent) states in neu-

rons [53–55]. Such coordinated regional activity may

support more complex information transfer [14] related

to hippocampal sharp-wave ripples or cortical spindles

[56–58]. These signals could indicate hippocampal–

neocortical interactions, or replay (or reactivation) of hippo-

campal information [59] thought to be related to memory

consolidation [60]. Alternatively, SWA may be crucial for

memory consolidation by globally reducing the strength of

neural connections, thereby increasing signal-to-noise for

important memories (‘synaptic downscaling’ [61,62]).

Consistent with theories emphasizing SWA in consolida-

tion, local SWA has been shown to increase preferentially

in learning-involved brain regions [63–65], with the

amount of local SWA positively correlating with post-

sleep learning performance [31]. As slow waves travel

across cortex in an orderly spatial pattern [66], future work

should address the functional importance of the origin,
Figure 2
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direction and speed of slow wave propagation over cortex

in skill learning.

Beyond SWA, sleep spindles, which are bursts of 11–

16 Hz thalamocortical oscillations [67�,68] have also been

linked to memory consolidation [69]. After motor skill

learning, participants show a significant increase in spin-

dle density in NREM 2 over their baseline and further,

that this increase is correlated with task improvement

such that the larger the increase in spindle activity, the

more the learner will improve on the motor task when

they wake up. More recently, oscillatory tACS stimulation

during sleep has been used to increase spindle count and

had demonstrated causal evidence increases in spindle

activity leads to larger improvements in motor skill mem-

ory consolidation [70�]. It has also been hypothesized that

spindles affect hippocampus-dependent memories, par-

ticularly by those who argue that declarative memory

consolidation involves the transfer of memories from

hippocampus to cortex. Given that spindles may co-occur

with hippocampal ripples, they may reflect coordination

between hippocampus and cortex, which would support

memory transfer [60,71�].

Recent work on spindle activity in memory consolidation

suggests that there may be a distinction between spindle

activity that supports declarative learning (i.e., describ-

able) and spindle activity that supports procedural learn-

ing. There are both slow (11–13.5 Hz) and fast (13.5–

16 Hz) spindles [72��]; slow spindles predominate over

frontal areas and are more common during NREM 3; fast

spindles have a centroparietal distribution and predomi-

nate during NREM 2 [73]. Recent research [67�,73]
suggests that fast spindles support motor skill consolida-

tion, while slow spindles support declarative memory

consolidation. More work is needed to clarify whether
ep Test

Compare performance
on cued stimuli vs.
uncued stimuli during SWS
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ng phase with cues, a nap or full night of sleep with presentation of

rovement. Although this paradigm is characteristic of declarative

omplex tasks such as skill learning, for example as in [72��] which used
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slow and fast spindles are functionally distinct, and what

their respective roles are in consolidating different types

of learning.

Cueing during sleep
The argument that sleep consolidation relies on reactiva-

tion or replay is often supported by studies that present

learning-related stimuli, or cues, during sleep (see [74] for

a review, Figure 2). Sleep cues can be associative — for

example, odors that were previously paired with visual

stimuli during learning could be experienced again during

sleep. In one such study [75], Rasch et al. presented

subjects with a rose odor while they learned the locations

of objects in a 2D grid. Subjects who experienced the odor

again during SWS recalled significantly more object loca-

tions than subjects who experienced an odorless vehicle.

Sleep cues can also consist of stimuli directly learned; for

example, spoken words from a foreign language could be

played softly to sleeping learners after a language learning

session (as in [76]). In general, this research has found that

presentation of cues during slow wave sleep enhances

learning [77�,78].

One possible reason that cueing may support learning is

that cues trigger, or at least bias, reactivation of neural

activity that was present during initial learning, thereby

leading to more replay events for the cued memories than

in uncued sleep. Increased replay theoretically strength-

ens synapses that encoded the memories, possibly facili-

tating memory restructuring or transfer. For human

learners, there is no direct evidence that cueing triggers

replay per se (i.e., the same neuronal firing patterns as

were active during learning), although animal work sup-

ports this account [79]. Studies such as odor-memory

cueing [75] demonstrate similar voxel patterns of hippo-

campal activity in humans using fMRI in response to

learning and to cueing during sleep. But similar voxel

activity patterns may reflect different neuron responses

whereas the same place-coding hippocampal cells can be

observed responding during waking and hypothesized

replay activity in place-learning nonhuman animals.

Given that there is more certainty about the role of

hippocampal cells in coding spatial location than the role

of the hippocampus in coding odor-association cues, there

is still more research needed to directly support the claim

about replay in humans.

Although some studies have argued that cueing may only

support the consolidation of declarative memories (e.g.,

[75]) recent research has demonstrated that cueing can

also support more complex skill learning [32�,80]. As

many real-world skills likely involve both declarative

and procedural components, further research is needed

to elucidate whether cueing benefits to skill learning are

occurring through effects on declarative components,

procedural components, or both. Recent research sup-

ports the idea that cueing does more than simply boosting
Current Opinion in Behavioral Sciences 2018, 20:174–182 
declarative memories or preventing forgetting, and there

is evidence that both accessibility and memory recovery

may occur through sleep [81,82]. Cueing has been shown

to promote the generalization of newly learned skills to

novel circumstances [83��], and to modulate affective

judgments [39�]. Cueing can also affect sleep consolida-

tion of motor skill learning via sleep spindles. Odor cueing

of an associated motor task increased frequency, ampli-

tude, and duration of centroparietal NREM 2 sleep spin-

dles, which correlated with performance improvement

[33�]. The ability of cueing to enhance skill learning, and

the exploration of which neural sleep events underlie

cueing effects, are areas that will likely receive much

attention in future studies.

Sleep and two-stage learning models
A hallmark of many learning models is that learning

occurs in two stages via two memory storage systems:

one quick-learning with weak encoding and one slow-

learning with stable encoding — thought to be neocortex.

In humans, the hippocampus appears essential for the

rapid formation of associations that, via a process of

consolidation (presumably during an offline period such

as sleep), are encoded into neocortical memory systems

(e.g., [12]). Although hippocampal based two-stage mod-

els deal mainly with declarative memory, the principle of

two-stage models may also apply to procedural memories.

Ashby and colleagues [84] proposed that a basal ganglia-

thalamus circuit serves as a fast-but-labile memory system

for categorization, rather than the hippocampus. Indeed,

it is possible that this fast-learning system mediates

reorganization or consolidation of procedural memories

in skill learning. More likely given other findings, it is

possible that a network involving hippocampus, striatum,

thalamus, and cerebellum is involved in early stages of

skill acquisition encoding specific experiences before

consolidation into neocortical systems [85–87] and

generalized.

Conclusion
Skill learning refers to the acquisition of a generalized

ability to perform using the interplay of sensory and motor

systems along with knowledge derived from experience.

A generalized ability goes beyond a single specific action

pattern, but instead, reflects the ability to perform across a

variety of settings and differential demands such as

playing tennis with different rackets against different

opponents. Although cognitive neuroscience distin-

guishes between declarative and procedural memories,

both may be important in skill learning given that there

may be explicit recall of particular situations as well as

generalized responses involved. How does sleep aid skill

learning? First, sleep following learning appears to reduce

the impact of both proactive and retroactive interference.

With long bouts of practice, performance may start to

degrade (due to reactive inhibition, [27]) or due to sub-

sequent experiences but after sleep, performance is
www.sciencedirect.com
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improved. This may manifest as performance enhance-

ment or just restoration of pre-interference learning.

Second, sleep protects against future loss from interfer-

ence by making skills robust against forgetting. Third,

sleep appears to promote the generalization and abstrac-

tion of skills from specific learning experiences.

There are a number of basic scientific questions however

that remain to be addressed in sleep consolidation of skill

learning. Although there are proposals for synaptic mech-

anisms to function during sleep consolidation, it is

unclear how these operate specifically in the context of

a two-stage model of learning. Moreover, how do such

mechanisms serve the functions of protecting learning,

modifying representations to restore performance after

interference, and promoting generalization and abstrac-

tion? Furthermore, understanding if and when sleep

produces performance enhancement compared to stabili-

zation remains an important question, as does whether

such enhancement operates through the same mecha-

nisms as restoration from interference and protection

against interference. As new paradigms such as cueing

during sleep become directed at understanding general-

ized skill learning, it may be possible to measure the

development and modification of neural representations

during sleep giving new insights into both skill acquisi-

tion and the mechanisms of sleep consolidation.
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between neocortex and hippocampus during sleep in rodents.
Proc Natl Acad Sci U S A 2003, 100:2065-2069 http://dx.doi.org/
10.1073/pnas.0437938100.

59. O’Neill J, Senior T, Csicsvari J: Place-selective firing of CA1
pyramidal cells during sharp wave/ripple network patterns in
exploratory behavior. Neuron 2006, 49:143-155 http://dx.doi.
org/10.1016/j.neuron.2005.10.037.

60. Siapas AG, Wilson MA: Coordinated interactions between
hippocampal ripples and cortical spindles during slow-wave
sleep. Neuron 1998, 21:1123-1128.

61. Tononi G, Cirelli C: Sleep and the price of plasticity: from
synaptic and cellular homeostasis to memory consolidation
and integration. Neuron 2014, 81:12-34 http://dx.doi.org/
10.1016/j.neuron.2013.12.025.

62. Czarnecki A, Birtoli B, Ulrich D: Cellular mechanisms of burst
firing-mediated long-term depression in rat neocortical
pyramidal cells. J Physiol 2007, 578:471-479 http://dx.doi.org/
10.1113/jphysiol.2006.123588.

63. Hanlon EC, Faraguna U, Vyazovskiy VV, Tononi G, Cirelli C:
Effects of skilled training on sleep slow wave activity and
cortical gene expression in the rat. Sleep 2009, 32:719-729
http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=2690558&tool=pmcentrez&rendertype=abstract.

64. Mascetti L, Muto V, Matarazzo L, Foret A, Ziegler E, Albouy G,
Sterpenich V, Schmidt C, Degueldre C, Leclercq Y et al.: The
impact of visual perceptual learning on sleep and local slow-
wave initiation. J Neurosci 2013, 33:3323-3331 http://dx.doi.org/
10.1523/JNEUROSCI.0763-12.2013.

65. Perfetti B, Moisello C, Landsness EC, Kvint S, Lanzafame S,
Onofrj M, Di Rocco a, Tononi G, Ghilardi MF: Modulation of
gamma and theta spectral amplitude and phase
synchronization is associated with the development of visuo-
motor learning. J Neurosci 2011, 31:14810-14819 http://dx.doi.
org/10.1523/JNEUROSCI.1319-11.2011.

66. Massimini M, Huber R, Ferrarelli F, Hill S, Tononi G: The sleep
slow oscillation as a traveling wave. J Neurosci 2004, 24:6862-
6870 http://dx.doi.org/10.1523/JNEUROSCI.1318-04.2004.

67.
�

Nishida M, Nakashima Y, Nishikawa T: Slow sleep spindle and
procedural memory consolidation in patients with major
depressive disorder. Nat Sci Sleep 2016, 8:63-72 http://dx.doi.
org/10.2147/NSS.S100337.

This paper addresses sleep spindle frequency as a factor in procedural
memory consolidation. The authors found that power in slow spindle
frequencies was inversely correlated with the magnitude of memory
consolidation for a finger tapping task, suggesting that a predominance
of slow spindles might be biasing memory consolidation towards other,
non-procedural memories.

68. Ruch S, Markes O, Duss SB, Oppliger D, Reber TP, Koenig T,
Mathis J, Roth C, Henke K: Sleep stage II contributes to the
consolidation of declarative memories. Neuropsychologia
2012, 50:2389-2396 http://dx.doi.org/10.1016/j.
neuropsychologia.2012.06.008.

69. Peters KR, Ray L, Smith V, Smith C: Changes in the density of
stage 2 sleep spindles following motor learning in young and
www.sciencedirect.com 
older adults. J Sleep Res 2008, 17:23-33 http://dx.doi.org/
10.1111/j.1365-2869.2008.00634.x.

70.
�

Lustenberger C, Boyle MR, Alagapan S, Mellin JM, Vaughn BV,
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