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ARTICLE INFO ABSTRACT

Keywords: There is debate about how individuals use context to successfully predict and recognize words. One view argues
Constraint that context supports neural predictions that make use of the speech motor system, whereas other views argue
Laﬂguag? for a sensory or conceptual level of prediction. While environmental sounds can convey clear referential
Ez;‘fzmm meaning, they are not linguistic signals, and are thus neither produced with the vocal tract nor typically en-

countered in sentence context. We compared the effect of spoken sentence context on recognition and com-
prehension of spoken words versus nonspeech, environmental sounds. In Experiment 1, sentence context de-
creased the amount of signal needed for recognition of spoken words and environmental sounds in similar
fashion. In Experiment 2, listeners judged sentence meaning in both high and low contextually constraining
sentence frames, when the final word was present or replaced with a matching environmental sound. Results
showed that sentence constraint affected decision time similarly for speech and nonspeech, such that high
constraint sentences (i.e., frame plus completion) were processed faster than low constraint sentences for speech
and nonspeech. Linguistic context facilitates the recognition and understanding of nonspeech sounds in much the
same way as for spoken words. This argues against a simple form of a speech-motor explanation of predictive

Speech perception
Environmental sound perception

coding in spoken language understanding, and suggests support for conceptual-level predictions.

1. Introduction

One of the hallmarks of both spoken and written language is the
interaction of word recognition with the meaning of linguistic context
(Morris & Harris, 2002; Simpson, Peterson, Casteel, & Burgess, 1989). A
long-known example is semantic priming, in which words are re-
cognized faster when preceded by a related word rather than an un-
related word (Hutchison et al., 2013; Meyer & Schvaneveldt, 1971).
Meaningful sentence context affects word recognition as well. Gating
studies, in which a spoken word is presented incrementally in small
sound segments of increasing length, have shown that in a highly
constraining sentence context (as opposed to a vague context), people
need to hear less signal to identify a spoken word (Grosjean, 1980;
Tyler & Marslen-Wilson, 1986). Additionally, when people are asked to
complete a sentence ending, they supply a word faster for a highly
constrained sentence context than for a low constraint context (Staub,
Grant, Astheimer, & Cohen, 2015).

Why is word recognition influenced by linguistic context? Extant
word recognition models incorporate the effects of context information
on lexical knowledge to varying degrees (see Dahan & Magnuson, 2006
for a review). Some models suggest that bottom-up input (e.g., the
acoustic waveform of a spoken word or the visual input of a printed
word) is the primary determining factor in the recognition process (e.g.,
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Norris, 1994; Norris & McQueen, 2008). In these models, input is
processed in a feed-forward manner through a series of transformations
until a word is recognized, and it is only at late stages, when the re-
cognized word’s meaning is being assessed, that it is integrated with
and constrained by its surrounding context. Some models draw on
evidence from priming studies to argue for a two-stage process in which
bottom-up input causes widespread activation of many candidate words
that could be consistent with the input, but are not constrained to be
consistent with the broader context (for example, the word “bug”
primes both “ant” and “spy,” even if the context suggests only the first
interpretation; Swinney, 1979). According to such models, context then
acts later, in the second stage of the model or “selection phase”, by
facilitating the process of narrowing down from the population of ac-
tivated candidates to the word that best fits the context (Swinney, 1979;
Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995).

In contrast to these “input driven” models, interactive recognition
models allow for continuous, on-line effects of context on word re-
cognition. In such models, higher-level information, such as semantic
associations, can alter processing at lower levels in a top-down manner
via continuous integration (e.g., McClelland & Elman, 1986; Mirman,
McClelland, & Holt, 2006) Shillcock and Bard (1993) were early critics
of the modular, two-stage account, arguing that for closed-class words,
immediate (as opposed to delayed) context effects support a continuous
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integration model. Further, eye tracking and fMRI studies have found
context effects extremely early in processing, before other models in-
corporate context effects, and even before the bottom-up input un-
ambiguously identifies a single word (Dahan, Magnuson, & Tanenhaus,
2001; Dahan & Tanenhaus, 2004; Magnuson, Tanenhaus, & Aslin, 2008;
Revill, Aslin, Tanenhaus, & Bavelier, 2008). These studies suggest that
lexical representations and semantic associations are being accessed
simultaneously and integrated with each other continuously.

In recent years, interactive recognition models have been re-
interpreted in light of predictive coding. In predictive coding accounts,
language comprehension rests on neural predictions, based on context
or prior knowledge, that are continuously compared against input as it
is being processed (e.g., Bonhage, Mueller, Friederici, & Fiebach, 2015;
DeLong, Urbach, & Kutas, 2005; McRae, Hare, Elman, & Ferretti, 2005;
Metusalem et al., 2012; Pickering & Garrod, 2007). While some (e.g.,
Pickering & Garrod, 2007) argue that the speech motor system is in-
tegral to predictive coding, this view is by no means universal (see
Hickok, 2012). ERP data from Federmeier and Kutas (1999) suggests
that context allows the prediction of semantic features for upcoming
words. However, it is possible that linguistic predictions could instead
be happening at the level of sensory (e.g., auditory or visual) re-
presentations (cf Lewis & Bastiaansen, 2015). It is also possible that
predictions involve both semantic and sensory information
(Federmeier, Wlotko, De Ochoa-Dewald, & Kutas, 2007; Kuperberg &
Jaeger, 2016; Lupyan & Clark, 2015; McRae et al., 2005).

The notion that semantic associations influence ongoing and sub-
sequent lexical processing (and vice versa) is supported by a substantial
body of work on cross-modal effects. One example of this sort of cross-
modal interaction is analog acoustic expression, the phenomenon in
which modulations in pitch and speaking rate in speech affects the
listener’s understanding of the message (e.g. Shintel, Nusbaum, &
Okrent, 2006). Information from musical underscoring can affect
speech understanding in a similar manner (Hedger, Nusbaum, &
Hoeckner, 2013). The effects of non-linguistic information on linguistic
interpretation are not confined to the auditory modality. Tanenhaus
and colleagues have used eye tracking to demonstrate that listeners
make rapid on-line use of visual scene context in order to disambiguate
spoken verbal instructions (Chambers, Tanenhaus, & Magnuson, 2004;
Tanenhaus et al., 1995). Such cross-modal effects on language have also
been demonstrated via priming studies, in which visual or spoken
words can facilitate processing of environmental sounds and vice versa
(Frey, Aramaki, & Besson, 2014; Orgs, Lange, Dombrowski, & Heil,
2006, 2007; van Petten & Rheinfelder, 1995). Both words and en-
vironmental sounds have also been found to prime recognition of pic-
tures (Chen & Spence, 2011; Schneider, Engel, & Debener, 2008).
Concepts associated with words can also influence processing in other
domains, as when words describing a particular direction of motion
(such as the word “approach”) affect visual motion perception
(Meteyard, Bahrami, & Vigliocco, 2007). Even when concepts are
conveyed in a complex, non-linguistic way (e.g., an auditory scene),
they can bias the people’s verbal labels for ambiguous environmental
sounds (Ballas & Mullins, 1991). Thus, there is strong evidence that
such cross-modal interactions occur bidirectionally, such that non-lin-
guistic contextual information can cross-modally facilitate spoken word
processing, and verbal context can facilitate processing of non-linguistic
stimuli.

Despite the extensive documentation of cross-modal interactions
between non-linguistic and linguistic information, the mechanisms
behind these effects remain unclear. One possibility is that participants
are covertly naming non-linguistic stimuli in order to guide processing
words. This possibility is favored by a modular account of language
processing, as according to this viewpoint, non-linguistic information
cannot interact with encapsulated language modules until it is trans-
lated into linguistic information. It seems unlikely, however, that this is
the case Potter, Kroll, Yachzel, Carpenter, and Sherman (1986) asked
whether printed sentences containing a picture substituted for a noun
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affected the speed and accuracy of plausibility judgments about the
sentences. They reasoned that if pictures directly access the same
system of concepts as words, rather than first being covertly named,
then response times for plausibility judgments should be similar for
“rebus” sentences (those containing a picture substituting for a word)
and all-word sentences. This was indeed what they found. The results
could not be easily attributed to covert naming, as previous work has
demonstrated that picture naming takes too long to be occurring in
Potter’s paradigm (cf Oldfield & Wingfield, 1965). Other work also
suggests against covert naming as the mechanism for context effects.
The studies by Chambers et al. (2004) and Tanenhaus et al. (1995) rely
on sufficiently complex visual scenes that covert naming alone would
not resolve the ambiguities present. Finally, it is highly unlikely that
covert naming could explain analog acoustic expression effects, as lis-
teners would have to translate the metaphoric meaning present in vocal
pitch or rate information directly into words.

If covert naming is not responsible for the cross-modal priming ef-
fects that have been previously described, how does this process work?
It is possible that, as suggested by Potter and colleagues, words and
non-verbal stimuli such as pictures access a single conceptual system
that is not grounded in language. In other words, the same neural re-
presentations of semantic information could be accessible via words
and other meaningful non-verbal stimuli. Work by Zwaan and collea-
gues describes an effect opposite to covert naming, in which words
activate “mental pictures” of the objects to which they refer (Zwaan,
Stanfield, & Yaxley, 2002), providing support for Potter’s hypothesis
that words draw on a general conceptual system that is also used by
nonverbal stimuli. In terms of a predictive coding framework, this
would mean that predictions are sufficiently amodal (or multimodal) to
interact easily with information from different domains. It is important
to note that many models of word recognition are largely concerned
with information involving phonemes and lexical representations, and
have not been extended to representations that involve general con-
cepts or “mental pictures” (Mcclelland, Mirman, & Holt, 2006; Mirman
et al., 2006; Norris & McQueen, 2008; Strauss, Harris, & Magnuson,
2007) although it is certainly possible to do so, especially considering
the aforementioned studies, which suggest that this non-lexical in-
formation is readily and perhaps obligatorily activated by words.

In the present experiment, we asked how recognition of recogniz-
able and meaningful, but non-linguistic, environmental sounds would
be affected by linguistic context by using spoken sentence frames that
were completed as a sentence by either a spoken word or an environ-
mental sound. An account of language understanding that isolates
speech processing as a separate system from a broader conceptual
system predicts that integrating non-linguistic inputs with preceding
sentence context should be more difficult than integrating spoken word
inputs. Non-linguistic information should be integrated as post-per-
ceptual problem solving, requiring a covert naming step. This might
incur heavy processing costs (over 500 ms for covert naming, cf Oldfield
& Wingfield, 1965). Based on prior research, however, it seems unlikely
that strictly isolated speech processing would occur. Not only have
cross-modal effects involving rapid interaction of many types of non-
linguistic information with language been documented, but recent re-
search has suggested that words and meaningful non-linguistic stimuli
may have more in common in processing than previously thought given
the neural resources involved in understanding both (Cummings et al.,
2006; Dick, Krishnan, Leech, & Saygin, 2016; Leech & Saygin, 2011;
Saygin, 2003; Saygin, Dick, & Bates, 2005). However, there is little
research on how environmental sounds are understood, especially in
comparison to speech sounds, and few studies directly comparing re-
cognition and understanding of these two classes of sounds under a
common contextual constraint.

Using this paradigm, we can measure whether the recognition or
understanding of an environmental sound in a sentence frame relies on
a reallocation of attention beyond what might be found for re-orienting
to a new talker. Recognizing speech when there is a change in the talker



S. Uddin et al.

in a sequence of utterances increases recognition time by about 40 ms
(Heald & Nusbaum, 2014b; Nusbaum & Morin, 1992; Wong, Nusbaum,
& Small, 2004). Moreover, a similar recognition cost around 40 ms is
found for recognizing musical notes when there is a change in instru-
ment (Van Hedger, Heald, & Nusbaum, 2015). Given this recognition
cost for shifts in signal source (voice or timbre) we might predict a
similar cost or greater for recognition of an environmental sound in the
context of speech.

Further, how does sentential (linguistic) constraint affect processing
of environmental sounds roughly matched in meaning to spoken words?
Spoken words following semantically constraining sentence frames will
be recognized with less signal and responded to faster than words fol-
lowing less constraining frames, but whether this “constraint benefit”
will occur to the same degree for environmental sounds is an open
question. If the constraint operates at a purely linguistic level, we would
not expect to see similar effects for environmental sounds.

Our experiments also allow us to address questions about how
constraint may be acting via predictive coding. There is evidence that in
particular situations, (e.g., when spoken word forms are predicted by
context, or a non-linguistic motor action is predicted), the speech motor
system generates predictions that aid comprehension (see Pickering &
Garrod, 2007, 2013). However, the substitution of environmental
sounds for spoken words presents a different kind of situation: the re-
cognition and comprehension of the nonspeech sound pattern cannot be
aided directly by the speech motor system, because the nonspeech
sound patterns are not vocally generated. Thus, the question would
appear to fall more in the realm of predicting an appropriate non-lin-
guistic motor action based on the linguistic form combined with the
environmental sound. However, participants in the current study are
not deciding how to act in this situation, but simply recognizing the
nonspeech sound or understanding the sentence frame-plus-sound.
Given that this falls outside the explanatory domain of speech-motor
system predictive coding, parallel results for increasing sentence con-
straint in recognition or comprehension for spoken words and mean-
ingful nonspeech sounds would pose a theoretical challenge.

Similarly, we can also use this experiment to ask, outside of a
speech-motor framework, how predictive coding operates to constrain
processing. The specific acoustics of environmental sounds are likely
much harder to predict than the acoustics of the same speaker from the
sentence frame saying the final word of the sentence, simply because
the range of possible environmental sounds that could fit the intended
meaning is larger. Thus, it follows that if neural predictions derived
from context are largely at the level of sensory representations, con-
straining sentence contexts should be more helpful to spoken words
than environmental sounds. However, if such predictions are more
conceptual in nature, we would expect similar constraint benefits for
spoken words and environmental sounds.

2. Experiment 1

The gating paradigm (e.g. Grosjean, 1980) has been used to measure
how much of a spoken word waveform is needed for recognition. In
general, gating studies show that listeners can correctly identify spoken
words even before the end of the word is heard, and that less of the
word is needed for recognition in sentence context than in isolation
(Grosjean, 1980). The present study used the gating paradigm in a si-
milar way: to compare the effects of sentence context in facilitating
identification for spoken words and non-linguistic (environmental)
sounds. The main question for this experiment is whether the benefit of
sentential constraint is similar for environmental sounds and spoken
words.

2.1. Methods

2.1.1. Participants
There were 131 participants (78 female). Participants were from the
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University of Chicago community (mean: 19.89years, range:
18-27 years); this includes students, staff, and residents of the sur-
rounding area. Informed consent was obtained in accordance with IRB-
approved protocol, and participants were compensated with their
choice of one course credit or $10 per hour of their time. Due to the
linguistic and auditory nature of the task, participants were limited to
those who reported speaking English as a first language, and who re-
ported having normal hearing.

2.1.2. Stimuli

Stimuli consisted of sentence frames recorded at 44.1 kHz by an
adult male native speaker of American English. There were two levels of
sentence frame constraint, such that half were relatively constraining of
the final word (high cloze probability, median = 0.87, IQR = 0.25) and
half were less constraining (low cloze probability, median = 0.16,
IQR = 0.33). We will refer to these two categories as “specific” (high
cloze probability) and “general” (low cloze probability). Cloze prob-
ability was determined based on sentence completions from 66 Amazon
Mechanical Turk participants. The last word of each sentence was the
target, and was recorded separately from the sentence frame to avoid
co-articulation confounds. There were 32 targets.

Each target word was a noun that could be represented by an en-
vironmental sound (e.g. “sheep”, and the sound of a sheep bleating,
Appendix Table A1). Corresponding environmental sounds were taken
from online databases such as soundbible, and if necessary resampled to
44.1 kHz. All sounds were then normalized to the same RMS level as the
sentence frames and target words using Matlab. A small survey of lab
members was conducted to ensure that the sounds were identifiable
when heard in isolation. Mean duration of targets was 0.502s for
spoken words and 0.838 s for environmental sounds (see Supplement).
Eight of the 32 environmental sounds involved repetition (e.g., the
sound of a siren involves repeating pitch oscillations; see Supplement).
Sentence frames and target sounds were digitally spliced together to
create complete sentences. Half the resulting sentences terminated in
spoken word targets, and half terminated in categorically matched
environmental sounds. Stimuli were presented at 65-70 dB over stereo
headphones.

2.1.3. Task

The task was based on Grosjean (1980); participants heard the
targets in progressively increasing 20 ms waveform increments, and the
task was to identify the target via a freely typed identification response.

There were six groups of participants tested using a 2 X 3 design
crossing target type (between-subjects: sound or word) and context
(between-subjects: general, specific, or isolated — i.e. no sentence con-
text—target). There were between 20 and 23 participants in each group
(Table 1). Participants heard each target once for a total of 32 trials; the
order of these trials was randomized. In the general and specific groups,
participants heard the targets after the appropriately constrained sen-
tence frame. In the isolated groups, they heard only the targets.

Targets, either isolated or at the ends of sentence frames (not sen-
tence frames themselves) were presented in successively increasing
segment lengths by 20 ms increments until either (1) the entire sound

Table 1

Numbers of participants in each group for experi-
ment 1 after the exclusion of the three participants
as described in Data Analysis for Experiment 1.

Condition n
Isolated Sounds 23
General Sounds 22
Specific Sounds 20
Isolated Words 21
General Words 22
Specific Words 20
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was presented, or (2) the participant’s identification responses re-
mained stable for 20 gates in a row. As soon as either (1) or (2) was
reached, the participant heard the whole sound, and was asked to
identify it one last time.

2.1.4. Data collection

Participants’ responses and corresponding gates were collected in
Matlab 2014 with Psychtoolbox 3 (Brainard, 1997; Kleiner et al., 2007)
and recognition accuracy was scored by hand. For each target, the gate
of recognition was defined as the gate of the earliest correct response, to
conservatively determine the minimal signal supporting recognition.
For each target, recognition points were calculated by converting gates
of recognition to seconds and averaging across subjects in the same
condition. This resulted in three recognition points for each target:
general context, specific context, and isolated target.

2.1.5. Data analysis

Three participants were excluded: one for reporting not being a
native English speaker after the experiment (condition: environmental
sounds/specific frames), one for previous participation in the study
(condition: spoken words/general frames) and one for not following
instructions (condition: environmental sounds/specific frames).

Percent correct responses for each target in each condition were
calculated across participants. While we expected that most partici-
pants would be close to ceiling for words, we expected some mis-
identification of environmental sounds, particularly in the isolated
target condition. Any target that dropped below 70% correct in any
condition across participants was removed from further analysis. Five
environmental sounds (baby laughing, creaky door, clock ticking, pa-
pers ruffling, and sword being unsheathed) and one word (“horn”) were
excluded from the final analysis due to this level of poor recognition in
the isolated condition. In conditions with sentence context, recognition
performance was always well above this level.

After exclusions of low-accuracy targets and problem participants,
the mean recognition point for each target in each context was calcu-
lated across subjects, and data points outside 2.5 standard deviations
from the mean were removed. We excluded recognition points from the
specific context condition from further analysis. For a majority of the
trials with specific sentence frames, participants answered correctly on
the first gate (after hearing only 20 ms of the target), regardless of
target type (sound or word). For highly constrained frames, guessing
the ending may be too easy when there are no foils or distractors,
leading to a ceiling effect. Thus, further examination of the data from
the specific sentence frames is not informative.

A Repeated Measures ANOVA was performed on the resulting re-
cognition gate data. The factors modeled included constraint level
(isolated versus general frame), and target type (word or environmental
sound). Excluding words corresponding to the five poorly recognized
environmental sounds, and excluding the environmental sound corre-
sponding to the excluded word “horn” did not substantially change the
ANOVA results, so these stimuli are included in further analyses.

2.2. Results

There was strong evidence for a context effect on recognition points
for both environmental sounds and words (Fig. 1), such that for both
target types, adding sentence context significantly decreased time to
recognition. Participants recognized targets in isolation after hearing an
average of 272 ms of waveform; this dropped to 139 ms of waveform for
targets occurring after a general sentence frame. Thus context sig-
nificantly reduces the amount of waveform needed to recognize
acoustic targets (F (1, 26) = 115.1, p < .001, d = 4.2). For spoken
words, sentence context reduced the amount of waveform needed for
recognition from 261 ms to 141 ms. This reduction of 120 ms by general
sentence context compared to isolated words is similar to the effects of
general context compared to isolated targets reported in previous
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Fig. 1. Mean duration of target needed for recognition. Sentence context shortens the
amount of target waveform needed for participants to recognize both environmental
sounds and words. Error bars represent + 1 standard error of the mean (SEM).

gating studies (Cotton & Grosjean, 1984; Grosjean, 1980; Tyler &
Wessels, 1983).

It is also the case that general sentence context reduces the amount
of waveform needed for the recognition of identifiable environmental
sounds by 148 ms: from 284 ms for isolated sounds to 136 ms for sounds
in linguistic context. Clearly, the information in sentence context is
informative about the identity of meaningful sounds.

While recognition points for sounds in isolation appear to be slightly
later than those for words, and slightly earlier in the presence of a
general sentence context (Fig. 1), there was no significant difference
between recognition points for sounds and words (F (1, 26) = 0.007,
p > .25, d = 0). Moreover, there was no significant interaction be-
tween context and target type (Fig. 1, F (1, 26) = 0.64, p > .25,
d = 0.31).

Our general sentence frames represented a range of cloze prob-
abilities. If the reduction in recognition point observed for targets in
sentence context is truly due to facilitation involving the conceptual
meaning of the sentence (as opposed, for example, to a purely psy-
chophysical effect of any sound preceding the target), there should be
an inverse relationship between cloze probability and recognition point
for the sounds and words presented in sentence context. This was in-
deed the case; there were significant nonlinear inverse relationships as
shown by Spearman’s rank order correlations (Fig. 2, Sounds: p
[25] = —0.45, p = .02; Words: p [29] = —0.71, p = 7.3e—6). The
strength of these inverse relationships was not significantly different
between sounds and words (z = 1.45, p = .15).

2.3. Discussion

Sentence context significantly reduces the amount of signal needed
for recognition of both spoken words and environmental sounds, even
when the sentence frame is general. This reduction happens to the same
extent for both sounds and words; there is no evidence for any inter-
action between context and target type. From a predictive coding per-
spective, these results suggest that sentence frames support neural
predictions that are mainly conceptual rather than sensory, because
context helps word and sound recognition to the same extent, even
though sensory predictions should be less precise for environmental
sounds. In the general constraint condition, the inverse relationship
between recognition point and cloze probability indicates that listeners
can use fine-grained meaning constraint information to facilitate pro-
cessing of both sounds and words to a similar extent. This relationship
also indicates that the earlier recognition points to items in general
context (as opposed to isolated items) is not due merely to sound pre-
ceding the targets, but to the way sentence constraint and meaning
interact with the interpretation of the target sound or word.

The gating paradigm is intended to mimic the recognition of a sound
as it unfolds in time. However, sounds do not stop in midstream
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Fig. 2. There is an inverse nonlinear relationship between cloze probability of the general
and words.

typically, so there is an aspect of unnaturalness to the gating study.
Furthermore, listeners in a gating study are not typically pressured to
respond as quickly as possible, although Tyler and Wessels (1985) did
not find that a speeded naming version of the gating task changed the
results. Thus it has been claimed that gating is not qualitatively dif-
ferent from typical speech perception (Cotton & Grosjean, 1984; Tyler &
Wessels, 1985, although see Allopenna, Magnuson, & Tanenhaus, 1998
for evidence that the gating paradigm may distort typical perception).
Given that listeners presented with environmental sounds were not also
identifying spoken word targets (between-subjects design), it seems
unlikely that the environmental sound recognition was influenced by a
specific word recognition strategy. Yet, it is also the case that listeners
may use a more cognitive-inferential approach given the nature of the
gating task than would be the case in normal speech perception. Fur-
thermore, the gating task is an identification task rather than a meaning
comprehension task. To address these concerns, we designed Experi-
ment 2 using fluent speech and a comprehension task.

3. Experiment 2

To test understanding of the meaning of the sounds in sentence
context, subjects were instructed to determine whether sentences were
“understandable” or “nonsense”. Half of the sentences were created to
be understandable (the last word or environmental sound matched fit
with the meaning of the sentence) and half were nonsense (the last
word or its matched sound was highly implausible in the context of the
sentence). Additionally, half of the stimuli ended in a spoken word
target and half ended in an environmental sound target. If the similarity
of sentence frame context effects for speech and non-speech in the first
experiment were governed by a slower problem-solving strategy rather
than a more fluent perceptual understanding process, speeded proces-
sing of spoken sentences should show a different pattern from the
gating task.

3.1. Methods

3.1.1. Participants

Participants were selected from the same population as in
Experiment 1, but individuals were excluded from participating in both
experiments to avoid effects from repeated exposure to the stimuli.
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There were 31 participants (15 female, mean: 20.93 years, range:
18-38 years). Informed consent was obtained and participants were
paid at the same rate as in Experiment 1.

3.1.2. Stimuli

The stimuli were taken from the same set as the previous study, but
additional “nonsense” sentences were created as distractors. These were
constructed by rearranging the ending words of the sentences. The re-
sulting sentences were verified in a short written survey to ensure that
they were not easily construed to make sense. For example, the sen-
tence “He closed his winter jacket with the zipper,” which is under-
standable, might be rearranged with the target “train” to form the
nonsense sentence “He closed his winter jacket with the train.” Thus,
the “understandable” nature of the sentence depended on the last word
of the sentence, which was replaced by a categorically matched en-
vironmental sound for half the stimuli. This 2 x 2 x 2 design gave rise
to eight possible types of sentences: general/specific con-
straint X word/sound target X understandable/nonsense (all sentences
are available in the Supplement).

Stimuli were presented at 65-70 dB over headphones. The experi-
ment was coded in Matlab 2014 with Psychtoolbox 3.

3.1.3. Task

The participants’ task was to decide, as quickly and accurately as
possible, whether the sentences were “understandable” or “nonsense”.
They responded by pressing one of two labeled keys, the side (right or
left) of which was counterbalanced across participants. This task was
chosen, as opposed to a sound recognition task, because recognition
could require participants to “name” the sound. For this reason, we
used an understandable/nonsense judgment rather than a sound re-
cognition task (as in Potter et al., 1986) in order to judge if environ-
mental sounds might also convey meaning without a naming step.

Each session of the experiment consisted of 5 blocks. The first block
contained 20 practice spoken sentences, all ending in spoken words, for
task familiarization. There was a 2 X 2 constraint X meaning design in
the practice block, such that general-specific and understandable-non-
sense conditions were equally represented. The remaining four ex-
perimental blocks consisted either of 32 spoken sentences with targets
as environmental sounds (sound blocks) or of 32 sentences with targets
as spoken words (word blocks). Half of the participants received blocks
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in a sound-word-sound-word order, and half the participants in word-
sound-word-sound. Within each block, each target occurred exactly
once. Targets never appeared in the same context more than once. For
example, if “sheep” was heard in a general-frame, understandable
context in block 1, it might appear in a general-frame, nonsense context
in block 2, and a specific-frame, understandable context in block 3.
Within each block, the order of stimuli was randomized. Participants
received short breaks between blocks.

3.1.4. Data collection and analysis

Response times (RTs) were recorded in Matlab with Psychtoolbox 3.
RTs were defined as the time between the onset of the sentence’s last
word/sound (“target onset”) and the participant’s button press.
Responses were classified as either (1) correct (the person responded
with “understandable” or “nonsense” as appropriate after the onset of
the last word or the sound), (2) incorrect (the person assigned the
wrong understandability status to the sentence after the onset of the last
word) or (3) guessing (the person responded before the onset of the last
word, yielding a negative RT).

Three subjects were excluded, one due to low English proficiency
and two for failure to follow instructions. Of these two, one was ex-
cluded for performance below 80% correct in the general/under-
standable/sounds condition, and one was excluded for excessive gues-
sing, evidenced by negative RTs in 66% (general/nonsense/sounds) and
80% (specific/nonsense/sounds) of trials. Only understandable sen-
tences with correct responses (i.e., understandable sentences to which
participants correctly responded “understandable”) were included in
further analysis of RTs; nonsense sentences were treated as distractors
and their RTs were not analyzed further. Incorrect trials and trials
where participants guessed (negative RTs indicate responses before the
target onset) were also excluded from further analysis.

A Repeated Measures ANOVA was performed on RT data. The fac-
tors modeled included constraint level of frame (general or specific),
and target type (word or environmental sound), both within-subjects.
As ANOVAs are not well-suited to modeling categorical data, we used a
logit mixed model approach for the percent correct data (Jaeger, 2008).
Using the Ime4 package in R (Bates, Maechler, Bolker, & Walker, 2015),
we compared model A (main effects of constraint and target type, with
random intercepts for subjects and sentence endings) with model B
(model A plus constraint * target type interaction). There was no evi-
dence that including the interaction term improved the performance of
the model (x2 (1) = 0.028, p > .8); therefore we performed further
analyses with model A.

3.2. Results

Accuracy was high in all conditions, close to 90% or higher (Fig. 3).

100- é__,.—/’é
4+
[9]
g 90-
o sentence ending
}j -= sound
c
8 -e- word
o 80-
o

70-

general spe‘ciﬁc
constraint level
Fig. 3. Percent correct responses for meaningful vs nonsense judgments about sentences

ending in either words or sounds. Accuracy was high (=90%) for all conditions but
higher for words than sounds. Mean percent correct = SEM error bars shown.
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Table 2
Coefficients for factors in a logit mixed model for percent correct data.

Coeff

Factor SE z P
Intercept 4.26 0.41 10.36 2E-16
Target type —1.45 0.47 -3.10 0.002
Constraint 0.66 0.25 2.62 0.009
1.0-
g
f"’i 0.91
g sentence ending
'3 0.8- - sound
0]
a -o- word
Q
@
0.7-
g
0.6-
general specific

constraint level

Fig. 4. RTs for meaningful vs nonsense judgment. Response time measured from target
(i.e. last item in sentence) onset shows that sentence constraint speeds meaningfulness
responses similarly for stimuli ending in spoken words and environmental sounds. Mean
RT + SEM error bars shown.

There was significantly higher accuracy in specific (compared to gen-
eral) context conditions (p = .009, Table 2); and significantly higher
accuracy in word (compared to environmental sound) conditions
(p = .002, Table 2). There was no evidence for an interaction between
these terms.

For response times, there was a main effect of sentence constraint,
such that meaningfulness judgments for specific (i.e. high constraint)
sentences were faster than general (i.e. low constraint) sentences
(Fig. 4, mean RTs 768 vs 879ms, F (1, 27) = 52.34, p < .001,
d = 2.79). The main effect of target type (i.e. spoken word versus
nonspeech sound) approached significance (F (1, 27) = 3.67, p = .066,
d = 0.74), but the interaction of target type with constraint level was
not significant (p > .25).

4. General discussion

Listeners have little difficulty understanding spoken sentences that
end in “sound effects” that substitute for spoken words. Though accu-
racy for all-word sentences was higher than for sentences ending in
nonspeech environmental sounds, overall accuracy was quite high in
both conditions at 90% correct or above, suggesting that even such an
unusual, unfamiliar task as understanding environmental sounds in
sentence context is not much more difficult than the everyday task of
understanding a normal sentence. How can we explain this effect? It is
unlikely that listeners use a covert naming strategy—naming in other
studies takes several hundred milliseconds, and we find no delays of
this magnitude. In Experiment 2, RTs were on average approximately
60 ms slower for environmental sounds, and this difference did not
reach significance. It is difficult to justify any model of language un-
derstanding that depends on a dedicated speech processor given that
nonspeech can be understood in spoken sentences and derive the same
contextual benefit as spoken words. In light of the current results, a
purely lexical model (e.g., the distributed Cohort model Gaskell &
Marslen-Wilson, 1997) cannot explain the results without substantial
and fundamental changes to the underlying assumptions. Of course,
environmental sounds, like spoken words, could be treated as meaning-
associated patterns in the same system albeit with a different kind of
feature base and pattern processing system Tyler, Voice, and Moss
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(1996) suggested that the top tier of the nodes in the TRACE model (i.e.,
words) could be linked to an even higher layer, containing nodes that
represent concepts or semantic information; context effects could occur
by activity in this layer feeding back onto the lower levels. If there is a
separate network of neural representations of environmental sounds
that is also one layer below the conceptual layer, then activity from
sentence context in the conceptual layer could feed back onto the sound
recognition layer, affecting recognition.

The present experiments demonstrate that sentential context can
provide equal benefit for both spoken words and non-speech sounds in
recognition of the targets as well as in understanding a whole sentence,
as if the non-speech sound is a natural part of the sentence. From a
predictive coding perspective, this suggests that even in situations
where it is not possible to make neural predictions via motor systems
(as our environmental sounds do not have clear speech or other motor
representations), some other type of predictions can constrain proces-
sing (cf Hickok, 2012). In other words, these results suggest that neural
predictions can occur at a conceptual level in constraining recognition
and comprehension. The acoustics of environmental sounds are more
variable and less predictable than the acoustics of words from the same
speaker that the participants heard in the sentence frame. Therefore, it
follows that accurate sensory predictions for environmental sounds
must be more difficult to form. Moreover, if predictive coding is highly
statistically dependent as suggested by Kuperberg and Jaeger (2016),
the statistical rarity of environmental sounds serving to complete sen-
tence frames would pose a substantial challenge. If participants need to
rely heavily on precisely tuned sensory predictions from context to
constrain processing, we would not have found such similar context
effects for both environmental sounds and words. Of course, this is not
to say that sensory predictions do not contribute to language under-
standing; merely that conceptual predictions can be sufficient to con-
strain processing to much the same extent. Thus, a processing frame-
work like that proposed by Lupyan and Clark (2015) could apply, with
the caveat that the importance of the “low-level predictions” is variable
based on the sensory quality or statistical properties of the stimuli.
Future work could compare neural responses to environmental sounds
and spoken words in sentence context Lewis and Bastiaansen (2015)
theorize that low and high gamma-range oscillations represent propa-
gation of top-down predictions and computation of prediction errors,
respectively. The relative importance of these processes for recognizing
and understanding environmental sounds versus spoken words in sen-
tence context can be tested with our stimuli set and EEG time-frequency
analyses.

While in many respects environmental sounds and words behaved
similarly in our experiments, the 60 ms processing cost for environ-
mental sounds was an important difference. It is unlikely that this dif-
ference is an artifact of the properties of the stimuli sets used, because
there was no significant difference in amount of waveform needed for
recognition of meaningful sounds and spoken words in Experiment 1. If
the small RT difference observed for meaningfulness decisions for
normal and rebus sentences was due to longer average recognition time
for the environmental sounds than the words, we might expect sys-
tematic differences in recognition points to show up in the gating study,
but none were apparent (i.e. no main effect of target type or context-
target type interaction).

One explanation for this processing cost is that in order to switch
from interpreting the experiment’s male speaker to an environmental
sound, listeners may have to shift attention in some sense. For example,
when an object appears in an unexpected location or changes form
unexpectedly, observers engage in shifting attention (Yantis & Serences,
2003). This is similar to the ~40 ms processing cost that is incurred
when talkers change (Nusbaum & Morin, 1992; Nusbaum & Magnuson,
1997). Interestingly, music work suggests that a processing cost of
about this size is not unique to language, but could reflect attention
reallocation in other types of auditory processing as well. Van Hedger
et al. (2015) found a processing cost near 40 ms for both switching
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between timbres and between octaves in a paradigm where absolute
pitch possessors were asked to respond to certain target notes. Perhaps
the additional 20 ms delay observed in our paradigm reflects switching
attention to a farther-away modality, as both the talker change and
timbre/octave change experiments took place in the same modality.
Regardless, the need for attention reallocation did not impair partici-
pants’ ability to make use of context information to speed processing.
This suggests that signal source changes (e.g., timbre, voice, speech/
nonspeech) can slow recognition but still engage the same processes
that are also needed for sentence understanding (Heald & Nusbaum,
2014a).

Another potential source for the 60 ms environmental sound pro-
cessing cost is the relative unfamiliarity of the sounds, particularly in
sentence context. It may be the case that, on top of reallocation of at-
tention, a processing lag is imposed by virtue of the environmental
sounds being less frequently heard than spoken words, and almost
never heard as meaningful items in a spoken sentence as they were in
our experiment. This interpretation is supported by the large body of
work on frequency effects in spoken word recognition (e.g. Dahan et al.,
2001; Luce & Pisoni, 1998), as well as by Van Hedger et al. (2015), who
found that responses were significantly slower to octaves with which
the participants had less musical experience based on the instrument
that they played. An effect of reduced familiarity can also be explained
as a predictive coding disadvantage, as more commonly encountered
stimuli are more likely to have stronger neural representations that can
be activated as predictions. Perhaps because in this paradigm, it is ea-
sier to form sensory-level predictions for spoken words, the words can
benefit from stronger low-level predictions that speed processing. It is
interesting to note that this cost is only 60 ms, which implies that strong
conceptual-level predictions are able to accommodate substantial var-
iance in the input to the system—even when that input is no longer
linguistic. In any case, it follows that if at least part of the sound-word
difference is due to differential experience, training should be able to
narrow this gap. Future experiments might train participants on a
subset of environmental sounds by pairing them with pictures, and then
compare participants’ speed of integrating trained sounds versus words
with sentence context in order to address this question. ERP analyses
could also reveal differences in the time courses of sound and word
processing that are too fine-grained to be picked up by behavioral
studies such as the ones reported here. Such analyses could reveal
whether differences between sounds and words are restricted to early,
attention-capture stages (e.g. auditory evoked potentials like the N1/
P2), whether they persist late in processing (e.g., N400, P600), and to
what extent they might be able to explain a ~60 ms processing cost.

It is worth noting that many extant models of speech recognition do
not explicitly account for how such seamless interactions between
verbal and nonverbal stimuli might be happening in terms of a me-
chanism. From a perspective concerning how these models are used to
explain language understanding, our results are interesting because
they suggest some updates to these models. A number of different
studies (Shintel & Nusbaum, 2007; Zwaan & Pecher, 2012; Zwaan et al.,
2002) have demonstrated that language, specifically an intact clause
referring to an object, can facilitate understanding of that object. In
these cases, an understandable linguistic form (a word, a clause, or a
sentence) refers to a non-linguistic object and speeds processing for that
object. The present experiments go one step further, because a non-
linguistic object is not referred to by a complete sentence, but is directly
incorporated into the sentence as if it were itself a linguistic form. In
other words, the sentences in our Experiment 2 do not function as
complete ideas without incorporating the meanings of the environ-
mental sounds. From the position of a general cognitive processing
system in which linguistic forms hold no special or privileged status
either by virtue of their high degree of statistical association or by
virtue of specialized mechanisms subserving their processing, the pre-
sent results are predicted and expected. Even without a claim of mod-
ularity however, connectionist models—e.g., Shortlist B, updates of
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TRACE, interactive Hebbian models—that are used to model speech
recognition would not fluently treat a non-speech sound as sub-
stitutable for recognition or understanding purposes (Mcclelland et al.,
2006; Mirman et al., 2006; Norris & McQueen, 2008; Strauss et al.,
2007). Learning models of speech (Jurafsky & Martin, 2000; Kuperberg
& Jaeger, 2016; McMurray, Aslin, & Toscano, 2009) operate on asso-
ciative statistical principles, and non-speech sounds do not occur in
these contexts. While a general cognitive processing perspective can
easily account for the rapid shift of attention to an unlikely sound if that
sound’s interpretation fits with the contextual meaning of the ante-
cedent frame, most language models do not take this into account.

The present results demonstrate that there is no evidence for a
differential effect of context for meaningful nonspeech sounds relative
to matched spoken words. Whether the meaning is derived from a
vocal-tract produced utterance, or from environmental generators,
context appears to similarly limit recognition and understanding. These
results highlight the importance of conceptual meaning in context ef-
fects, as these two types of signals are vastly different in their acoustic
properties, sources, and statistical occurrences, but are well matched in
terms of conceptual meaning.

In summary, our results have strong implications for language
processing theories. They add to the considerable body of evidence
arguing against modular, encapsulated language processing by

Appendix A. List of Stimuli

See Table Al.
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demonstrating that understanding words and environmental sounds in
the same sentence requires an attention switch akin to switching be-
tween two talkers, rather than a deductive or covert naming strategy.
Moreover, our results suggest that, if predictive coding is responsible
for the facilitative effects of constraint on language processing, it is
likely that predictions involving general conceptual representations (as
opposed to low-level sensory predictions), are largely sufficient to drive
constraint effects. Finally, our results suggest that models of speech
comprehension that largely rely on lexical attributes should be mod-
ified to include a larger contribution from general cognitive processes
that take conceptual meaning into account.
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Paired environmental sounds and spoken words used in the current study.

Sound

Word

Baby laughing

Camera shutter

Car engine revving
Cashregister ch-ching
Cat meowing
Churchbells ringing
Clock ticking

Coin dropping onto hard surface
Cow mooing

Crow cawing

Dog barking

Creaky door closing
Doorbell ringing

Drum set

Frog croaking

Guitar being strummed
Gunshot

Helicopter

Car horn

Papers being ruffled
Phone ringing

Octave played on piano
Rooster crowing
Saxophone notes
Servicebell ringing
Sheep bleating
Ambulance/police siren
Sword being unsheathed
Toilet flushing

Train whistle

Water dripping

Zipper

“baby”
“camera”
car”
“cashregister”
“cat”
“churchbells”
“clock”
“coin”

cow”
“crow”
“qno”
.
“doorbell”
“drums”
“frog”
“guitar”
“gunshot”
“helicopter”
“horn”
“paper”
“phone”
“piano”
“rooster”
“saxophone”
“servicebell”
“sheep”
“siren”

«

«

“sword”
“toilet”
“train”
“water”
“zipper”
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