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A B S T R A C T

Adjusting to the vocal characteristics of a new talker is important for speech recognition. Previous research has
indicated that adjusting to talker differences is an active cognitive process that depends on attention and
working memory (WM). These studies have not examined how talker variability affects perception and neural
responses in fluent speech. Here we use source analysis from high-density EEG to show that perceiving fluent
speech in which the talker changes recruits early involvement of parietal and temporal cortical areas, suggesting
functional involvement of WM and attention in talker normalization. We extend these findings to acoustic source
change in general by examining understanding environmental sounds in spoken sentence context. Though there
may be differences in cortical recruitment to processing demands for non-speech sounds versus a changing
talker, the underlying mechanisms are similar, supporting the view that shared cognitive-general mechanisms
assist both talker normalization and speech-to-nonspeech transitions.

1. Introduction

People seem to understand speech from different talkers with little
difficulty. However, even among native speakers of a language, there is
wide variability in the acoustic characteristics of various phonemes
(Heald & Nusbaum, 2014b; Peterson & Barney, 1952). Even more
acoustic-phonetic variability is introduced when accents and speech
patterns specific to non-native speakers are taken into account. This
variability in the relationship between acoustic patterns and phonetic
categories introduces ambiguity into the recognition of a speaker’s in-
tended phoneme given that any particular acoustic pattern might map
onto different phonetic categories (Nusbaum & Magnuson, 1997). De-
spite this acoustic-phonetic variability, listeners appear to quickly and
easily understand utterances from different talkers, albeit with a small
but reliable recognition performance reduction (Heald & Nusbaum,
2014b; Nusbaum & Magnuson, 1997). One explanation of this perfor-
mance reduction is talker “normalization”: the process by which lis-
teners use talker vocal characteristics to resolve acoustic-phonetic
ambiguities that are introduced when a talker change demands atten-
tion and extra processing (Nusbaum & Morin, 1992).

Though listeners can adjust to a new talker quickly, and are not
usually aware of the fact that they are sensitive to the vocal char-
acteristics of the new talker, there is evidence that this process may use
working memory (WM), possibly to selectively direct perceptual at-
tention towards acoustic cues needed to calibrate the speech for

recognition. For example, when listeners must maintain a high WM
load, they recognize spoken target syllables more slowly when the
talker changes. When the talker does not change, however, the high
WM load does not have the same effect (Nusbaum & Morin, 1992).
These results strongly suggest that adjusting to a new talker draws on
WM resources. Further, changes in talker result in slowed recognition
and/or categorization for CV syllables, vowels, and whole words
(Mullennix & Pisoni, 1990, Nusbaum & Morin, 1992; Kaganovich,
Francis, & Melara, 2006; Wong, Nusbaum, & Small, 2004).

In order to examine the underlying neural mechanism for the effects
of talker change, Wong et al. (2004) used fMRI to investigate con-
tributions to talker normalization, both from traditional superior tem-
poral language areas, and from a more distributed attention network. In
this study, participants listened to lists of individual spoken words, and
their task was to recognize a target word in the list. Each participant
listened to lists in two conditions. In the “blocked by talker” condition,
the words were all spoken by the same talker. In the “mixed talker”
condition, the words were spoken by four different talkers. The results
showed that listeners were slower to detect the target word in “mixed
talker” conditions, which was expected from prior research (e.g.,
Nusbaum & Magnuson, 1997). Moreover, Wong et al. (2004) identified
brain areas that were differentially active in blocked-talker and mixed-
talker conditions. Two areas responded significantly differently to
mixed and blocked talkers; these were middle/superior temporal areas,
and the superior parietal lobule. The response in temporal cortex was

https://doi.org/10.1016/j.bandl.2019.104722
Received 13 June 2018; Received in revised form 4 November 2019; Accepted 13 November 2019

⁎ Corresponding author at: 5480 S. Cornell Ave., Apt. 615, Chicago, IL 60615, United States.
E-mail address: sophiauddin@uchicago.edu (S. Uddin).

Brain and Language 201 (2020) 104722

Available online 10 December 2019
0093-934X/ © 2019 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/0093934X
https://www.elsevier.com/locate/b&l
https://doi.org/10.1016/j.bandl.2019.104722
https://doi.org/10.1016/j.bandl.2019.104722
mailto:sophiauddin@uchicago.edu
https://doi.org/10.1016/j.bandl.2019.104722
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bandl.2019.104722&domain=pdf


interpreted as resulting from increased recognition difficulty in the
mixed-talker condition, and superior parietal activity was interpreted as
reflecting a shift in perceptual attention that might address the in-
creased recognition difficulty.

Unfortunately, the poor time resolution of fMRI makes it difficult to
know if indeed the parietal activity was a consequence of, or a pre-
cursor to, the temporal cortex activity. However, EEG could provide
information about the relative timing of activity in these cortical re-
gions due to a talker change. For example, the N1 event-related po-
tential (ERP) measured with EEG (usually peaking 50–150 ms after
stimulus onset - (Näätänen & Picton, 1987) has been interpreted as
reflecting a change in sensory attention (Picton & Hillyard, 1974), or
the detection of a “trigger” that leads to reallocation of attention to
something new (Lijffijt et al., 2009). It is generally thought that in-
creased attention leads to an increase in N1 amplitude; this has been
demonstrated for many types of auditory stimuli, including (but not
limited to) music and fluent speech (Astheimer & Sanders, 2009;
Heacock, Pigeon, Chermak, Musiek, & Weihing, 2019; Peng, Hu, &
Chen, 2018; Picton & Hillyard, 1974; Snyder, Alain, & Picton, 2006;
Zendel & Alain, 2014). To the extent that talker normalization involves
attentional mechanisms, we might expect a change in talkers to in-
crease N1 strength. In support of this idea, prior ERP research has
suggested that talker changes increase N1 amplitude (Kaganovich et al.,
2006). These findings support the idea that a talker change produces a
shift in attention, likely directed towards relevant acoustic cues for the
vocal characteristics of the new talker (Heald & Nusbaum, 2014b;
Nusbaum & Magnuson, 1997; Nusbaum & Schwab, 1986).

Despite the strong link between the N1 and attention, however,
there is a lack of research that has linked the N1 in a talker change
context to empirically-informed brain areas. Due to the general in-
volvement of the superior parietal lobule in perceptual attention tasks
that do not necessarily involve speech (e.g., Yantis et al., 2002), Wong
et al. (2004) interpret the involvement of this area in talker normal-
ization as being related to the deployment of perceptual attention, as
predicted by Nusbaum and Morin (1992) from behavioral research. We
might therefore expect activity in this area to differ during the N1 based
on whether the talker changes, as the N1 has been implicated in the
attentional processes described above. This leads to specific hypotheses.
First, the changes in parietal cortex reported by Wong et al. (2004)
should be reflected in talker-variability-dependent changes in EEG.
Second, if talker change is reflected in ERP responses, if such changes
are found in the N1 component of the ERP, this would support the
hypothesis that these are early sensory attention changes in processing.
Third, the N1 changes should be more closely associated with superior
parietal cortex than with superior temporal cortex, thus indicating that
the parietal activity identified in prior research is the same as this early
sensory attentional engagement in N1.

While the N1 has been extensively discussed in the context of au-
ditory perceptual attention, there are other ERP components that may
be informative for understanding how listeners accommodate to talker
changes. Like the N1, the P2 is an ERP that has been observed to in-
crease in amplitude with increased attention (Picton & Hillyard, 1974).
The P2 is an ERP, usually peaking after the N1 at 150–250 ms after
stimulus onset, that often occurs in response to auditory or visual sti-
muli (Lijffijt et al., 2009). If it is correct that the P2 increases in am-
plitude with attention, it might be expected to increase in amplitude
with a change in talker. By this logic, the P2 might also co-occur with
increased activity in the superior parietal lobule when the talker
changes, as might reasonably be predicted for the N1 based on Wong
et al. (2004) findings.

There is also evidence that the P2 reflects analysis of stimulus fea-
tures (Luck & Hillyard, 1994; Näätänen & Winkler, 1999). Active the-
ories of speech processing (e.g. Nusbaum & Morin, 1992) hold that
when there is a talker change, there is greater possible ambiguity in
terms of alternative interpretations of the speech signal. Active theories
say that the alternative interpretations shift attention (predicting N1/

parietal activity as described above). In turn, such attention shifts may
trigger different processing of relevant auditory features and thus may
result in increased P2 activity. Thus, another reason to expect P2 effects
during a talker change is that listeners likely must analyze the features
of the new talker’s voice in order to select the most relevant acoustic
cues for understanding this talker. This leads us to another prediction
based on the temporal locations implicated by Wong et al. (2004).
Unlike the superior parietal lobule, these temporal locations are active
in speech processing and other complex auditory processing
(Rauschecker & Scott, 2009). Given this information, it makes sense
that they are active in talker normalization due to heightened analysis
of the features of the speech signal. If the P2 does indeed reflect feature
analysis, we might expect that source analysis involving the P2 would
also reflect involvement of temporal speech areas, particularly when
the talker is changing.

From this active perceptual framework, talker change can increase
working memory load due to perceptual ambiguity (requiring the
maintenance of multiple interpretations in WM) and shift attention,
thus predicting interactions between measured working memory (WM)
and the N1 and P2 potentials in a talker change paradigm. Given pre-
vious research showing an interaction between WM load and talker
normalization – indicating that talker variability increases demand on
WM (e.g., Nusbaum & Morin, 1992) – it makes sense to expect that the
underlying neural processes would reflect this use of WM. Previous
research has shown that measured WM capacity predicts N1 and P2
amplitudes in tasks requiring auditory selective attention (Giuliano,
Karns, Neville, & Hillyard, 2014), such that higher WM capacity is as-
sociated with stronger attentional modulation of the N1 and P2. At one
point, Engle (2002) proposed that WM is involved in the deployment of
attention (also see Cowan, 2017).

In terms of recognizing speech when there is a change in talker,
active theories (Nusbaum & Magnuson, 1997) hold that talker change
increases the possibility of perceptual ambiguity. It has been suggested
that maintenance of relevant information in WM interactions with at-
tentional processes that affect early sensory processing of stimuli (Awh
& Jonides, 2001). In terms of processing a talker switch, a talker change
could lead to temporary ambiguity in phonetic interpretation of the
utterance due to a change in the vocal characteristics of the talker. This
ambiguity could increase the number of different potential meanings of
the input, leading to a many-to-many mapping problem. Because these
alternative interpretations of the input have to be stored in WM before
one is eventually chosen, a change in source could increase the WM
load. In accordance with Awh and Jonides, then, the maintenance of
this information in WM could interact with attentional N1 and P2
processes.

An additional consideration is that previous research on the effects
of talker change have focused on isolated discrete and silence-separated
utterances using stimuli such as isolated vowels (e.g., Kaganovich et al.,
2006), syllables (e.g., Morin & Nusbaum, 1989), or words (e.g.,
Mullennix & Pisoni, 1990). To what extent are the effects of talker
variability due to the disruption that occurs between utterances versus
the effects of a transition in fluent speech? The present study examined
whether a fluent change in talker between a spoken sentence frame and
final spoken word will affect speech processing in the same way as
observed in a series of discrete and separate utterances. On the one
hand, the change in vocal characteristics might be more disruptive
since it is an ecological violation of speech (except in some circum-
stances) for one talker to fluently complete a different talker’s sentence.
On the other hand, message-level information from a meaningful sen-
tence might override the need to normalize for talker differences. In
order to establish that the talker normalization effects reflect a me-
chanism that operates during typical speech perception, it is important
to replicate previous findings using fluent speech and in the context of
language understanding. In the present experiment, participants were
focused on understanding the meaning of the sentence as a whole, ra-
ther than a recognition or categorization task.
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2. Experiment 1: Cortical sources and WM-dependence of talker
normalization mechanisms

2.1. Introduction

Given that talker change increases demand on WM and requires
changes in attention, we predict that a change in talker should increase
N1 and P2 amplitudes. Indeed, an increase in N1 amplitude has been
reported during talker changes (Kaganovich et al., 2006), likely re-
flecting an increase in the recruitment of attention to helpful features of
the new talker’s voice. To our knowledge, effects of talker change on the
P2 have not been previously reported, although increased attention in
other tasks has been found to increase P2 amplitude (Picton & Hillyard,
1974). If the effects of talker change are similar, we predict an increase
in P2 amplitude in response to a talker change due to demands on at-
tention and WM.

Given the role of superior parietal cortex in attention and in talker
normalization as described in Wong et al. (2004), we predict that
source analysis of the N1 and P2 scalp topographies will reveal in-
creased superior parietal activity when the talker changes. If, as pre-
viously suggested (Luck & Hillyard, 1994; Näätänen & Winkler, 1999),
the P2 also reflects stimulus feature analysis, then source analysis of P2
scalp topographies might reveal increased activity in auditory proces-
sing temporal areas (i.e., the areas found in the Wong et al. (2004)
talker normalization study) when the talker is changing. This would be
evidence that the parietal response to talker change is a fast sensory
mechanism rather than a later attentional process during categorization
or responding.

Finally, talker normalization could depend on individual differences
in WM and thus the N1 and P2 responses may be moderated by WM
capacity. Work by Giuliano et al. (2014) predicts that higher individual
working memory capacity is associated with greater attentional mod-
ulation of the N1 and P2. In participants with greater WM capacity,
there should be more ability to respond flexibly to the demands of
talker change by deploying attention and sensory analysis. Therefore,
we predict that talker change will elicit stronger N1 and P2 ERPs re-
lative to the same talker condition in high-WM participants. On the
other hand, for low-WM participants, the difference between same- and
different-talker N1s and P2s might not be as pronounced. Research has
suggested that low-WM participants have less flexible attentional con-
trol than high-WM participants (e.g., Awh & Vogel, 2008). In the con-
text of talker change, then, high-WM participants should be better able
to effectively use WM and deploy attention. However, if talker nor-
malization is just reflective of demand on an active speech perception
system (Heald & Nusbaum, 2014a) rather than mobilization of a spe-
cific process, then this system may operate constantly with responses
dependent on the demands of perception. This means that the same
processes should be part of normal speech perception even for a single
talker, albeit to a lesser extent than when the talker changes. This could
lead to a pattern in which both high- and low-WM participants have
stronger ERPs when the talker changes, but the size of this difference
does not change substantially based on WM. In this case, low-WM
participants would have weaker N1 and P2 ERPs across the board, and
high-WM participants would have stronger ones. If this account is
correct, we expect main effects of talker change and WM capacity dif-
ferences on the N1 and P2, without an interaction between these fac-
tors.

2.2. Methods

2.2.1. Participants
Participants were twenty-two (12 female, 10 male) adults from the

University of Chicago and surrounding community. Their mean age was
19.59 years (SD: 1.0, range: 18–21). Twenty-one were right-handed and
one was left-handed. Participants completed questionnaires to ensure
that they knew English to native proficiency, and that they were not

taking medications that could interfere with cognitive or neurological
function (questionnaires available at https://osf.io/x8dau/).
Participants received $30 cash for their participation. The target
number of participants for recruitment was based on our previous
studies with environmental sounds (Uddin, Heald, Van Hedger, & Klos,
et al., 2018, Uddin, Heald, Van Hedger, & Nusbaum, et al. 2018).

2.2.2. Working memory testing and analysis
Working memory was assessed by performance on an auditory n-

back task. This task was administered in the lab prior to application of
the electrodes for the EEG. The task involved actively monitoring a
string of spoken letters of the alphabet, presented one at a time 3000 ms
apart at 65–70 dB SPL. Participants pressed a button labeled “Target” if
the current letter matched the letter presented n trials previously, and
pressed a button labeled “Not Target” if the currently spoken letter did
not match the aforementioned letter. The n-back task consisted of a 2-
back task followed by a 3-back task. Both of these consisted of 30
practice trials (not analyzed) followed by 90 total trials (three runs of
30 letters). One third of the spoken letters were targets.

Performance on the auditory n-back was assessed using signal de-
tection theory. Specifically, for each participant, we calculated the
proportion of hits (correctly identified targets) and false alarms (in-
correctly assigned “target” status to a non-target letter). These were
then z-scored. Because proportions of 1 or 0 correspond to z-scores of ∞
or −∞, respectively, we subtracted 0.5 from the total number of hits if
there were a full 30 hits, and added 0.5 to the number of false alarms if
there were 0 false alarms, so that real numbers would be obtained for
the z-scores. (In theory we would have performed a similar adjustment
if a participant had 0 hits or 60 false alarms, but this never happened).
Adjustments like these are common practice in calculating d′ from n-
back data (e.g., Van Hedger, Heald, Koch, & Nusbaum, 2015). After z-
scoring the proportion of hits and false alarms, d′ was calculated for
each participant as the z-scored hits minus the z-scored false alarms.
Due to a ceiling effect in 2-back performance (7 participants had perfect
scores, and another 7 missed only one trial), only 3-back d′ scores were
used in further analysis.

2.2.3. Stimuli
The stimuli were spoken sentences with the last word of the sen-

tence (the “target”, always a noun) recorded separately to avoid co-
articulation confounds. There were thirty-two targets; for each, there
was a high-constraint (high cloze probability for match ending,
median = 0.87, IQR = 0.25) and a low-constraint (low cloze prob-
ability for match ending, median = 0.16, IQR = 0.33) sentence stem.
Cloze probability was determined based on written sentence comple-
tions from 66 Amazon Mechanical Turk participants. All sentence stems
and endings were produced by an adult male speaker of Midwestern
English (F0 = 131 ± 12 Hz, mean ± SE). A second set of ending words
was produced by an adult female speaker of Midwestern English
(F0 = 198 ± 3 Hz). In all cases, stimuli were digitized at 44.1 kHz with
16 bits of resolution and amplitude normalized to the same RMS level
(~70 dB SPL).

For stimulus presentation, sentence stems and endings were spliced
together in Matlab to form continuous sentences with no audible
acoustic artifacts. In addition to half the sentences ending in a different
talker, sentences were spliced together such that half the sentences
contained a semantic mismatch comparable to mismatches used in an
N400 study (e.g, Kutas & Hillyard, 1980). These mismatches were
produced ahead of time by scrambling the targets and sentence stems.
The resulting sentences were verified in a short written survey to ensure
that they were not easily interpreted as sensical. Each word was pre-
sented an equal number of times in match and mismatch conditions.

Sentences were blocked by target type, such that there were four
blocks of 32 sentences ending in the male talker (i.e., the same talker
that said the rest of the sentence), and four blocks of 32 sentences
ending in the female talker. Block types alternated across the
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experiment, and the type of starting block (i.e. same or different talker)
was counterbalanced across subjects. Subjects were told that a different
talker would be saying some of the words, and warned before blocks in
which the last word was said by the female talker. Within the blocks,
stimuli were presented pseudo-randomly such that there was no parti-
cular pattern of matches vs. mismatches, or high vs. low constraint
sentences, although within each block there was a 50–50 mix of mat-
ches vs. mismatches, as well as high vs. low constraint sentences.

Stimuli were presented at 65–70 dB over insert earphones (3 M E-A-
RTone Gold) using Matlab 2015 (MathWorks, Inc., Natick, MA) with
Psychtoolbox 3 (Brainard, 1997; Kleiner et al., 2007).

2.2.4. Testing procedure
Participants were told what to expect from the EEG procedure, in-

cluding the application of the saline electrode net, and the ~45-minute-
long task of listening passively to sentences while minimizing eye blinks
and movements. Each participant’s head circumference was measured
to fit the EGI electrode net. Participants were instructed to keep head
motion and eye blinks confined to identified non-stimulus periods of
time (several seconds between sentences). Participants were told to
listen to the spoken sentences and think about whether they made
sense. To encourage participants to pay attention, they were tested on
recognition of the target words four times per block. Specifically, they
heard a random sentence ending word matching the speaker saying the
ending words in the current block. They were asked, “Have you heard
this item? If yes, was it in a meaningful or nonsense context?” In this
case, “meaningful” refers to congruent/match and “nonsense” refers to
incongruent/mismatch. They responded via button press with two
buttons marked “yes” and “no” on the keyboard.

After the experiment, photographs of the electrode placement were
taken by seating the participant in a geodesic dome containing eleven
cameras (EGI, Eugene, OR). These photographs were used for de-
termining the precise location of each of the 128 electrodes for each
subject; the coordinates obtained through this process were used to
increase precision for source analysis.

2.2.5. EEG setup
The 128 electrodes (embedded in an EGI saline Hydrocel Geodesic

Sensor Net) were prepared by soaking in saline, and were applied to the
participant. Impedance of each electrode was reduced to 50 kΩ or less
by repositioning or rewetting with saline. EEG was continuously re-
corded and digitized at a sampling rate of 1000 Hz. Cz served as the
online reference. The amplifier used was a 128-channel high-input
impedance amplifier (400 MΩ, Net Amps™, EGI, Eugene, OR).
Netstation 5 was used for data collection (EGI, Eugene, OR).

2.2.6. Data preprocessing
The online reference (Cz) was reincorporated into the montage. The

EEG was re-referenced to the average of all electrodes and filtered with
a 0.1–30 Hz bandpass (Tanner, Morgan-Short, & Luck, 2015) and a
60 Hz notch filter (to remove electrical noise) in BESA 6.0. The full EEG
recordings were then segmented based on trial type; segments were
defined as 100 ms before to 900 ms after the onset of the sentence-final
word, i.e., the target. Trials with eye blinks, movement or muscle ar-
tifacts, or other contamination were removed from further analysis;
exceptionally noisy channels were interpolated. For each trial, baseline
correction was performed using the 100 ms preceding the onset of the
sentence-final word. Participants with 50% or more artifact-con-
taminated trials in any one condition were removed from further ana-
lysis. This procedure resulted in removal of one participant who lost
over half the trials in all conditions.

Sensor locations unique to each participant were assigned using the
net placement photographs taken in the geodesic dome for each parti-
cipant.

2.2.7. Analyses
2.2.7.1. Topographic analyses. BESA 6.0 was used to generate
participant-level averaged waveforms (as in Uddin, Heald, Van
Hedger, & Nusbaum, et al. 2018). BESA was used to create ascii files
of time-varying voltage at every electrode; these were used for
topographic analysis in RAGU (Randomization Graphical User
interface, Koenig, Kottlow, Stein, & Melie-Garcia, 2011).

We performed significance testing on the data using 5000 rando-
mizations of the EEG topographies in RAGU to estimate baseline com-
parison data for analysis. This analysis is known as a TANCOVA, and it
allowed us to compare observed topographic differences between
conditions to the estimated topographic differences under the null hy-
pothesis. In this way, we can assess if there are significant main effects
of factors (e.g., talker) on the scalp topography of the elicited voltage.
We included main effects of talker (same vs. different) and congruency
(match vs. mismatch) as within-subjects factors, and WM (as measured
by d’ on a 3-back task) as a between-subjects factor. The output of the
TANCOVA is a set of time windows, defined in milliseconds post-target
onset, in which there are significant main effects of each of these fac-
tors—as well as their interactions—on the scalp topographies. The
TANCOVA also provides average scalp topographies for the different
factors at every time point. This allowed us to test whether a change in
talker affects the patterns of neural activity during word understanding
in sentence context, and if so, at what time points this happens.
Similarly, it allowed us to test whether working memory (WM) inter-
acted with ERPs, based on the prediction that WM could affect
switching perception between different talkers.

We were also interested in the relationship of the talker-normal-
ization-related sources identified in Wong et al. (2004) to ERP differ-
ences related to changes in talker, as well as WM. As the TANCOVA
identifies time windows in which there are significant effects of talker
and WM on scalp topography, as well as interactions between these
factors, we further used these time windows for source analysis.

2.2.7.2. Source analysis. In order to relate our findings to the brain
areas identified by Wong et al. (2004) for talker normalization, we
performed source analysis using BESA 6.0. For source analysis, the
lowpass filter was disabled to preserve as much information as possible
for the process of transforming topographies into sources and to
minimize possible distortions of the signal (cf., Widmann and
Schröger, 2012). In general, we compared the variance explained by
Wong et al. (2004) sources for same versus changing talker brain
responses. If these sources better explain brain responses to a changing
talker, this would provide additional evidence that these brain areas are
active in talker normalization.

We performed source analysis in several different time windows
that were previously identified in the TANCOVA as having main effects
of talker, main effects of WM, or an interaction between these two
factors. Because we expected talker change effects on the N1 and P2
ERPs, we limited our analysis to TANCOVA windows that occurred
before 300 ms post-stimulus onset. Finally, we chose the P600 time
window (628–675 ms, defined by a main effect of congruency in the
TANCOVA characterized by P600 topographies; Table S.1, Fig. S.1) as a
control window for source analysis. We chose this window because
based on prior P600 source analysis (Shen, Fiori-Duharcourt, & Isel,
2016) we did not expect a significant contribution from the parietal and
temporal sources identified by Wong et al. (2004). Also, we did not
have any reason to expect differences in these sources based on talker
change this late in the ERP.

Largely overlapping time windows for source analysis were com-
bined into single windows, e.g. a window from 124 to 147 ms was
combined with a window from 136 to 179 ms to make a larger window
from 124 to 179 ms (Table 4). This was done in order to reduce the
number of comparisons in further statistical testing, and still preserved
a separation between N1 and P2 time periods as defined in the litera-
ture (e.g., Lijffijt et al., 2009; Näätänen & Picton, 1987). Performing
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source analysis separately on these time windows allowed us to ex-
amine the time course for the activity of the sources identified in Wong
et al. (2004), as due to time resolution, it was impossible to tell from
fMRI whether temporal and parietal sources are active in talker nor-
malization at the same time, or sequentially.

In each of these time windows, we fit three models to averaged
condition-level data for each participant. The dipole models were, in
Talairach coordinates: a “parietal model” including source dipoles at
parietal locations identified by Wong et al. (2004) to be involved in
talker normalization ([33 −67 45] and [−33 −67 45]), a “temporal
model” including [56 −28 1] and [−56 −28 1], also identified by
Wong et al. (2004) for involvement in speech perception, and a “both
model” including all four coordinates as sources. For all models, the
dipoles were held fixed at the aforementioned coordinates, but their
orientations were allowed to vary. The subject-level averages used for
source analysis were the “different talker” and “same talker” topo-
graphies, pooled across different constraint levels and congruency
status. The models produce a residual variance (RV) i.e., the amount of
variance in the scalp voltage maps that is left unexplained by the
sources included in the model. Thus, a smaller RV indicates a better fit.

2.2.7.3. Regions of interest (ROIs). In order to represent most of the
topography of the scalp in our analysis without arbitrarily choosing just
a few electrodes, data were pooled into nine ROIs as carried out by
Potts and Tucker (2001), who used four adjacent electrodes in each
ROI. This technique was also used in Uddin, Heald, Van Hedger, &
Nusbaum, et al. 2018); details can be seen in Table 1. The pooled ROI
data were used for representing voltage traces in figures.

2.3. Results

Our first hypothesis was that, due to talker-normalization-related
attentional reallocation, a change in talker would be associated with
stronger N1 and P2 ERPs. If, on the other hand, talker normalization is
not occurring in fluent sentences, or if for some reason attentional
mechanisms are not involved, the N1 and P2 should not be significantly
different between the same- and different-talker conditions. The
TANCOVA revealed significant main effects of talker change on scalp
topography 124–147 ms, and again 235–278 ms, after last word onset
(p < 0.05, Table 2, Fig. 1 b,c, Table S.1). These time ranges correspond
to N1 and P2 time ranges reported in the literature (e.g., Näätänen &
Picton, 1987; Lijffijt et al., 2009). However, when the topographies
were examined further, it was clear that these differences do not in-
clude a typical central negativity followed by central positivity that is
characteristic of an N1-P2 complex, such as that elicited by environ-
mental sounds in our previous work (Figs. S.3 and S.4 in Uddin, Heald,
Van Hedger, & Nusbaum, et al., 2018). The voltage traces were also
devoid of N1 and P2 peaks (Fig. 1d). Scalp topographies in both N1 and
P2 windows were characterized by a left-lateralized, frontocentral po-
sitivity. In the same-talker condition in the N1 window, this positivity
was modified by a posterior central negativity that was absent in the

different-talker condition (Fig. 1a, left panel). In the P2 window, the
positivity was more frontal in the different talker condition than in the
same talker condition (Fig. 1a, right panel). Unfortunately, the lack of
defined N1 and P2 peaks made it impossible to compare peak amplitude
in the same versus different talker conditions. However, we were still
able to perform source analysis using the scalp topographies in these
time windows to test our hypotheses about parietal and temporal
sources. We were also able to test if scalp topographies in these time
windows interacted with WM.

With regards to working memory, we hypothesized that if adjusting
to a new talker in a fluent sentence involves WM-mediated attentional
processes, we should find either main effects of WM on the scalp to-
pography, or an interaction between factors of talker and WM, parti-
cularly during the N1 and P2 which are known to be modulated by
attention (e.g., Picton & Hillyard, 1974). While the TANCOVA did not
identify any time windows in which WM interacted significantly with
talker, there were several windows with significant main effects of WM
on scalp topography (p < 0.05, Table 3, Table S.1). As we predicted,
these included windows during both the N1 (136–179 ms) and the P2
(220–258 ms).

Finally, we hypothesized that a change in talker would result in an
increase in activity dependent on parietal sources during the N1 and P2
due to these sources’ involvement in attention allocation (Wong et al.,
2004; Yantis & Serences, 2003). We also hypothesized that there might
be an increase in activity related to temporal sources during the P2,
related to heightened auditory feature processing when the talker
changes (Luck & Hillyard, 1994; Wong et al., 2004). If these hypotheses
are correct, we should find that dipole models involving parietal re-
gions better explains N1 and P2 topographies for the different-talker
condition (as opposed to the same talker). We should also find that
models based on temporal sources better explain P2 topographies for
the different-talker condition. On the other hand, if these hypotheses
are incorrect, we should not find significant differences between same-
and different-talker responses with regards to the fit of models in-
cluding these brain areas.

We used source analysis in BESA to calculate the percent of topo-
graphical variance explained by (1) parietal sources alone, (2) temporal
sources alone, and (3) both parietal and temporal sources for both
same- and different-talker ERPs. While the average residual variance
was always lower for the different talker condition except in our control
window from 628 to 675 ms (Table 5) – suggesting that the sources
from Wong et al. (2004) better account for EEG measurements of neural
activity in the different-talker condition than the-same talker condition
– these differences were not always large. To statistically test the dif-
ference in model fit, we compared the RV for each model, in each time
window, between same and different talker using one-sided, paired
Wilcoxon rank-sum tests. As this led to twelve comparisons, a Bonfer-
roni-corrected threshold of p < 4.2E-3 was used. In most of the time
windows, including the control window as we expected, the difference
between the fit of the models in the different and same talker conditions
was not significantly different (V ≤ 174, p ≥ 0.021). However, in the
220–278 ms time window, the model including temporal sources was a
significantly better fit for the different talker condition (V = 191,
p = 3.6E−3, d = 0.6).

Though we did not find a significant difference between different
and same talker with regards to the amount of variance explained by
the parietal source model, we have reason to expect that differences
between same and different talker might be mediated by working
memory, potentially via attentional reallocation mechanisms that place
a load on WM (Giuliano et al., 2014; Engle, 2002). Parietal sources have
been implicated in attentional mechanisms (e.g., Yantis et al., 2002).
Therefore, we expect the degree to which parietal sources are differ-
entially active across talkers to depend on WM. In order to test this
hypothesis, we calculated correlations between WM and the fit of the
source models to the scalp topography elicited by a changing talker.
Specifically, we correlated WM with the difference between model fit in

Table 1
Electrodes included in ROIs. Numbers correspond to electrode numbers in the
EGI Hydrocel 128-electrode Geodesic Sensor Net.

ROI Electrodes # electrodes

Anterior left 26, 27, 32, 33 4
Anterior midline 4, 11, 16, 19 4
Anterior right 1, 2, 122, 123 4
Center left 40, 45, 46, 50 4
Center midline 7, 55, 107, Cz 4
Center right 101, 102, 108, 109 4
Posterior left 58, 59, 64, 65 4
Posterior midline 71, 72, 75, 76 4
Posterior right 90, 91, 95, 96 4
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Table 2
Significance windows identified by TANOVA. There were no significant interactions of
congruency (match/mismatch) and talker (same/different). There were, however, differ-
ences in topography based on talker, as well as short N400 and longer P600 congruency
main effects. Windows that do not pass the 40 ms duration threshold, but that are located
where we had an a priori expectation of a main effect, are italicized.

Fig. 1. N1 and P2 window topographies across talker. (a) Scalp topographies for sentence endings said by the same vs. a different talker at 140 and 250 ms post
ending onset. Blue indicates negative potential; red indicates positive potential. (b) Time-varying generalized dissimilarity between raw same and different talker
topographies. To give a sense of the meaning of this effect size, the mean and 95% CI for the generalized dissimilarity expected due to random chance (estimated from
randomizing the data) is also represented. (c) Time-varying p-value, i.e., proportion of randomizations leading to a larger effect size than observed. We can see
widespread main effects of talker across the entire ERP. (d) Voltage traces for pooled same and different talker sentence endings in the nine examined ROIs. Note that
negative is up and time = 0 ms corresponds to ending onset.
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the same- and different-talker conditions, that is: RVsame – RVdiff. In the
N1 time window (124–179 ms), there was a significant correlation
between WM and RVsame – RVdiff for the parietal model (Fig. 2, r = 0.51,
p = 0.018), which likely led to the marginally significant correlation
between WM and RVsame – RVdiff for the model including both temporal

and parietal sources (r = 0.41, p = 0.06). The RVsame – RVdiff of the
temporal-only model was not significantly correlated with WM in this
time window (r = 0.34, p = 0.13). This indicates that as WM increases,
the parietal source model explains responses to a change in talker better

Fig. 1. (continued)

Table 3
TANCOVA windows with main effects and interactions of the between-subjects
factor of WM.

Factor Window Start Window End Length >=40 ms

d' main 3 29 26 FALSE
d' main 136 179 43 TRUE
d' main 220 258 38 FALSE
d' main 300 323 23 FALSE
d' main 690 700 10 FALSE
d' * Talker NULL

Table 4
Time windows examined in source
analysis. Numbers are in milliseconds
after target onset. The last window is a
control in which there is not expected
to be differential activity of parietal or
temporal sources.

Start Stop

124 179
220 278
628 675

S. Uddin, et al. Brain and Language 201 (2020) 104722

7



than it does responses to the same talker.1 It is worth noting that cor-
relations between WM and RVsame – RVdiff were not significant in other
time windows (r < 0.4), supporting the idea that WM is differentially
affecting the adjustment to a new talker via parietal sources specifically
during the N1.

2.4. Discussion

Unfortunately, there were not distinct N1 and P2 peaks to test our
hypotheses about talker change effects on peak amplitudes. This might
be due to the lack of a silent gap between the end of the sentence stem
and the last word; many studies examining N1 effects (e.g., Zhang,
Peng, & Wang, 2013) include several hundred milliseconds of silence
before the auditory stimulus of interest, although previous work with
the present experiment’s sentence stems followed by environmental
sounds showed a clear N1-P2 complex which led us to believe that we
might observe this in response to a changing talker (Uddin, Heald, Van
Hedger, & Nusbaum, et al. 2018). Despite this, our hypotheses about
the underlying cortical sources active during a talker switch were

largely supported. First, during the N1 window, we found a significant
correlation between WM and the [same – different talker] difference in
model fit for the model incorporating the parietal sources from Wong
et al. (2004; Fig. 2). This indicates that for high-WM participants, the
parietal sources better explain responses to a talker switch than re-
sponses to a consistent talker, whereas this pattern is reversed for low-
WM participants. This finding fits nicely with findings that individuals’
WM capacity affects their ability to deploy attention (e.g., Giuliano
et al., 2014). These results suggest that when faced with a change in
talker, high-WM participants are able to allocate attention to features of
the new talker that will aid understanding. As the WM ~ RVsame – RVdiff
correlation is significant in the N1 time window (Fig. 2) but not the P2
time window, our results suggest that this WM-related attentional re-
allocation happens during the N1 and depends, at least in part, on the
recruitment of the attention-related parietal sources identified by Wong
et al. (2004). In contrast, low-WM participants likely have difficulty
attending to aspects of the new talker’s speech. These participants
might be better able to attend to the familiar patterns of the same
talker, which may be why the attention-related parietal sources better
explain responses to the same talker for low-WM participants.

While we did not find a relationship between parietal sources and
the P2 ERP, we did find support for our hypothesis that temporal
sources from Wong et al. (2004) would better explain responses to the
changing talker during the P2 time window (Table 5). As these tem-
poral areas are associated with auditory processing of complex stimuli
(Rauschecker & Scott, 2009) including speech (Belin, Zatorre, Lafaille,
Ahad, & Pike, 2000), this finding agrees with previous work associating
the P2 with auditory feature processing (e.g., Näätänen & Winkler,
1999). Interestingly, WM capacity did not correlate significantly with
RVsame – RVdiff for the temporal model in the P2 time window. This
means that there was no systematic relationship between WM and the
degree of heightened feature analysis taking place when the talker
changes. Along with the results from the N1 time window, this points
towards an account where, at least in processing a talker change in
fluent speech, attentional mechanisms act earlier during the N1 in a
WM-dependent manner via parietal cortical areas. After this, areas in
temporal cortex mediate auditory feature analysis of the new talker’s
output during the P2.

3. Experiment 2: Do talker normalization mechanisms mediate
auditory processing of environmental sounds in sentence context?

3.1. Introduction

As we have stated previously, the neural mechanisms behind un-
derstanding words and environmental sounds (ES) in the context of a
spoken sentence appear to be remarkably similar (Uddin, Heald, Van
Hedger, & Nusbaum, et al., 2018), arguing for domain-general me-
chanisms for auditory understanding, rather than specialized mechan-
isms for speech. Could it therefore be possible that the same

Table 5
Average residual variance (RV) for different vs. same talker in different time windows, with parietal, temporal, and “both” models tested separately. Bold italics
denotes the window where the RV for different and same talker was significantly different after controlling for multiple comparisons. Note that a lower RV indicates
more variance explained by the model and thus indicates a better fit.

Time win Model Different 95% CI Same 95% CI

124–179 ms parietal 50.86 45.35 – 56.36 56.83 51.63 – 62.03
temporal 40.36 34.97 – 45.74 47.00 40.29 – 53.72
both 33.32 28.50 – 38.13 37.67 31.39 – 43.95

220–278 ms parietal 55.35 48.67 – 62.03 62.29 56.41 – 68.17
temporal 42.84 36.69 – 48.98 51.24 45.48 – 57.01
both 35.08 28.23 – 41.93 42.17 35.81 – 48.52

628–675 ms parietal 65.63 57.51 – 73.74 58.32 50.43 – 66.20
temporal 54.76 44.99 – 64.54 45.83 36.91 – 54.75
both 48.33 38.89 – 57.78 40.15 31.62 – 48.68

Fig. 2. Correlation between source analysis model fit and WM. For the N1 time
window, correlation between WM as measured by d’ on a 3-back task, and the
difference in the goodness of fit of a parietal source model to scalp topography
data between same and different talkers (RVsame – RVdiff).

1 Note that a high RVsame – RVdiff indicates that the parietal model is better at
explaining the different-talker topography than the same-talker topography,
while an RVsame – RVdiff of zero indicates that the parietal model is equally good
at explaining the topography in the same and different talker conditions, and a
negative RVsame – RVdiff indicates that the parietal model is better at explaining
the same-talker topography.
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mechanisms involved in supporting a switch in talkers are also involved
in allowing listeners to understand non-speech in speech context? It is
no surprise that talker normalization is treated as solely a speech
phenomenon in the literature (see Weatherholtz & Jaeger, 2016, for a
review)—the notion of a “talker” is meaningless when dealing with
non-human-produced environmental sounds such as train whistles or
dogs barking. However, Laing et al. (2012) provide compelling evi-
dence that the talker switch cost is not dependent on the language
identity of the stimuli. Rather, it can be affected by the frequency range
of tone sequences, as well as by speech stimuli.

Though environmental sounds are not speech, they do share some
characteristics with words said by a novel talker. Like words, ES have
easily-identified meanings. Previous work has shown that, both beha-
viorally and neurally, their meaning is processed in sentence context in
a way similar to words (Uddin, Heald, Van Hedger, & Klos, et al., 2018,
Uddin, Heald, Van Hedger, & Nusbaum, et al. 2018). There are some
general similarities between a change in talker and the presentation of
environmental sounds in sentence context in that they are distinct in
acoustic source compared to the rest of the sentence. Also, as with a
change in talker, the spectral characteristics of environmental sounds
differ acoustically from the previous speech, although such differences
will be greater for environmental sounds. If the neural mechanisms that
support speech recognition when there is a talker change are in fact
more general than previously thought, WM, as well as the parietal and
temporal sources identified by Wong et al. (2004) involved in selective
attention and speech feature analysis, might play a similar role in ad-
justing to understanding non-speech in speech context. To test this, we
carried out further analyses on previously reported ERP data comparing
sentence understanding for speech and non-speech environmental
sounds (Uddin, Heald, Van Hedger, & Nusbaum, et al., 2018).

We hypothesized that attention is recruited in order to process re-
levant acoustic features of the environmental sounds that are required
for understanding given the shift in source. In sentence context, the
environmental sounds are likely to have alternative interpretations,
thereby loading WM and shifting attention to specific properties of the
signal. In previous research, we have shown that N1 and P2 amplitudes
are much greater for ES than for speech in sentence context (Uddin,
Heald, Van Hedger, & Nusbaum, et al., 2018). In light of previous work
implicating these ERPs in attentional processes (e.g., Picton & Hillyard,
1974), this finding supports the idea that attention recruitment is
greater for ES in than words. However, the relationship of WM to these
N1 and P2 effects has not been demonstrated. We hypothesize that WM-
dependent attentional mechanisms are recruited to process environ-
mental sounds (ES) in sentence context in a way similar to its recruit-
ment for spoken words when the talker changes.

As in Experiment 1, we therefore predict that the TANCOVA will
reveal either interactions between target type and WM, or main effects
of WM on scalp topography, within N1 and P2 time windows. In
Experiment 1, we found main effects of WM on scalp topography, with
no talker-related interactions. As discussed in Section 2.1, this is ex-
pected if talker-change-related N1 and P2 effects occur to the same
degree for both high-and low-WM participants, while baseline N1 and
P2 activity in the same talker condition differs according to WM ca-
pacity. While it is possible that we could find this pattern for ES as well,
it is worth examining the implications of increased processing difficulty
for ES. Behavioral data suggest that ES are harder to process in sentence
context than spoken words, although both are easily understood and
similarly affected by factors such as constraint (Uddin, Heald, Van
Hedger, & Klos, et al., 2018). ES are also farther from words said by a
consistent talker, both psychologically and acoustically, than words
said by a new talker. It is therefore possible that ES will place a larger
load on WM than a changing talker, either through increased demands
for recruitment of attention, or through increased ambiguity leading to
the maintenance of more information in WM. This might lead to a
pattern in which high WM participants are better able to modify at-
tention to understand the ES, while low WM participants are limited in

this ability by their WM capacity. We might therefore find interactions
between WM and target type. Finally, if our hypothesis is not correct,
and recruitment of attention for ES processing is not WM-dependent,
we would expect no main effects or interactions involving WM in these
time windows.

Perhaps the most interesting question is whether cortical sources
implicated in talker normalization (Wong et al., 2004) are also active
during comprehension of ES in spoken sentence context. We hypothe-
sized that mechanisms for such adaptation are more cognitive-general
than previously thought, and will be involved in adaptation to ES as
well as a changing talker. In experiment 1, we demonstrated a WM-
dependent contribution of parietal sources to changes in the N1 during
talker normalization. We also found a contribution of temporal sources
to talker-normalization-related changes in the P2. As discussed in
Section 2.4, these results suggest heightened attention reallocation
during the N1 period, and heightened auditory feature processing
during the P2. We expect to find the same pattern for ES in sentence
context. If our hypothesis is not correct, we would not expect to find
significant differences in parietal and temporal contributions to ES and
speech topographies during the N1 and P2 time windows. Instead, these
dipole models should explain both types of responses equally well.

3.2. Methods

3.2.1. Participants
As this experiment consisted of new analyses involving previously

published data (Uddin, Heald, Van Hedger, & Nusbaum, et al., 2018),
the participants were the same as described therein. Specifically, they
consisted of 23 (8 female, 13 male, 1 agender, 1 genderfluid) adults
from the University of Chicago and surrounding community, with a
mean age of 22.1 years (SD: 3.7, range: 18–29). Fifteen were right-
handed and eight were left-handed2. Participants completed ques-
tionnaires to ensure that they knew English to native proficiency, and
that they were not taking medications that could interfere with cogni-
tive or neurological function. Participants received either 3 course
credits (n = 11) or $30 cash (n = 12) for their participation in the
study.

3.2.2. Working memory testing and analysis
Working memory was assessed by performance on an auditory n-

back task, which was administered prior to application of the electrodes
for the EEG, as in Experiment 1. The n-back task and the determination
of d′ from the data proceeded identically to Experiment 1. As in
Experiment 1, only 3-back d′ scores were used in further analysis.

3.2.3. Stimuli
The stimuli were identical to those in Experiment 1, with the dif-

ference that instead of half the sentences ending in a changing talker,
half of them ended in an environmental sound that was matched in
meaning to the ending word of the sentence (Uddin, Heald, Van
Hedger, & Klos, et al., 2018, Uddin, Heald, Van Hedger, & Nusbaum,
et al. 2018). Like the spoken words, the environmental sounds were
digitized at 44.1 kHz with 16 bits of resolution and amplitude nor-
malized to the same RMS level (~70 dB SPL). The stimuli can be found
at https://osf.io/asw48/.

As in Experiment 1, sentence stems and endings were spliced

2 This experiment had a higher proportion of left-handers than the previous
one, which is a potential limitation of our comparison between the two ex-
periments. However, our experimental questions concerned general attentional
network activity rather than specific lateralized language processes, rendering
handedness less important with respect to our hypotheses. As a further check,
we analyzed right-handed participants alone, and found that they exhibited the
same patterns as the whole group, suggesting that there are no important
handedness-related differences affecting the parameters of interest (Fig. S.2).
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together in Matlab to form continuous sentences with no audible
acoustic artifacts. The block structure and conditions of this experiment
were the same as in Experiment 1, except that blocks of 32 sentences
with a different talker saying the sentence-final word were replaced by
blocks in which the sentence ended in an environmental sound. Stimuli
were presented at 65–70 dB over insert earphones (3M E-A-RTone
Gold) using Matlab 2015 with Psychtoolbox 3.

3.2.4. Testing procedure and EEG setup
The testing procedure and EEG setup were identical to Experiment

1, with the difference that, due to mobility difficulties, one of the
participants could not sit in the EGI geodesic dome to photograph the
precise location of the electrodes.

3.2.5. Data preprocessing
EEG preprocessing proceeded the same way as in Experiment 1; this

is also described in Uddin, Heald, Van Hedger, and Nusbaum, et al.
(2018). As in experiment 1, participants were removed from further
analysis if they had 50% or more artifact-contaminated trials in any one
condition. One participant was removed for this reason; they lost over
half the trials in the specific/mismatch/sounds condition. Electrode
coordinates from individuals’ net placement images were used to assign
individual sensor locations for each participant. For one participant
who could not sit in the geodesic dome due to mobility difficulties, an
average coordinate file provided by EGI was used to estimate electrode
locations (Electrical Geodesics Inc., Eugene, OR).

3.2.6. Analyses
3.2.6.1. Topographic analyses. Averaged waveforms were generated as
in Experiment 1. For significance testing, a TANCOVA using a null
hypothesis distribution generated from 5000 randomizations was
performed in RAGU as in Experiment 1. The TANCOVA included
main within-subjects factors of congruency (match or mismatch) and
target type (environmental sound or spoken word), and WM (d′ on the
3-back task) as a continuous between-subjects factor.

As in Experiment 1, we performed further source analysis using time
windows identified by the TANCOVA as having main effects of target
type, WM, or interactions between the two.

3.2.6.2. Source analysis. Source analysis proceeded as in Experiment 1,
using the same cortical source dipoles. The only difference was that
instead of comparing responses to same vs. different talker, we
compared responses to speech vs. environmental sounds. If these
sources from Wong et al. (2004) better explain brain responses to
environmental sounds, this would provide evidence that these brain
areas are active not only in talker normalization, but in more general
processing of acoustic source change.

For this experiment, the time windows identified by the TANCOVA
for source analysis were 122–137 ms, 180–219 ms, and 273–293 ms. It
should be noted that unlike Experiment 1, these windows were marked
by interactions between WM and target type, rather than main effects of
each.3

3.3. Results

We hypothesized that, like a change in talker, ES at the end of a
sentence would recruit attention in a WM-dependent manner. As such,
we expected to find either interactions between target type and WM, or
main effects of WM on scalp topography, within time windows (i.e., N1
and P2) previously implicated in the deployment of attention. While the

TANCOVA did not identify any significant main effects of WM on scalp
topography, it did identify time windows in the vicinity of the N1 and
P2 where there were significant interactions between WM and target
type (ES or speech; p < 0.05, Table 6, Table S.2).

In order to test our hypothesis that the cortical sources identified by
Wong et al. (2004) would also be involved in processing ES in sentence
context, we submitted these WM-by-target type interaction windows to
source analysis. If our hypothesis is correct, we should find a pattern
similar to Experiment 1, in which ES scalp topographies are better
described by the aforementioned sources, particularly in N1 and P2
time windows. Except for the difference in the source data and time
windows, this analysis (including statistical testing) was identical to
that in experiment 1. We used a Bonferroni-corrected threshold of
p ≤ 5.6E−3 for nine tests. We found that the model including both
parietal and temporal sources explained the ES data significantly better
than the word data in both the 122–137 and 180–219 ms time windows
(V = 207, p = 3.7E-3 and V = 205, p = 4.6E−3, respectively;
Table 7), and approached significance in the 273–293 time window
(V = 201, p = 7.0E-3; Table 7). This comparison did not reach sig-
nificance for the other models (i.e., temporal-only and parietal-only).
Unlike experiment 1, the fit of the models did not correlate significantly
with WM; that is, participants with high WM did not exhibit a different
pattern than participants with low WM when it came to the difference
in model fit between speech and ES.

3.4. Discussion

For this experiment, we hypothesized that the same mechanisms
underlying talker normalization would also be active in facilitating the
transition between speech and meaningful nonspeech. First, we had
hypothesized that ES in sentence context would elicit responses in the
N1 and P2 time windows that differ based on WM, due to heightened
attentional reallocation to relevant features of the ES. In agreement
with this hypothesis, the TANCOVA revealed significant scalp topo-
graphy effects due to interactions between WM and target type. Though
this is in contrast with the main effects of WM found in experiment 1, it
was not entirely unexpected. As suggested in Section 3.1, the increased
difficulty and ambiguity of ES (compared to speech) might place a
higher load on WM than a simple change in talker. As a result, in-
dividual differences in WM capacity might become more important in
the period of attention deployment during the N1 and P2. Our results
suggest that this is indeed what happens for ES in sentence context.

Second, we hypothesized that the cortical sources implicated in
talker normalization would also mediate ES processing in sentence
context. This hypothesis was also supported; dipole models including
both parietal and temporal sources explained ES topographies sig-
nificantly better than speech topographies in both N1 and P2 time
windows. This difference was marginally significant in a third, late-P2
time window (273–293 ms). These results suggest that sources pre-
viously implicated in talker normalization are active in processing a
switch from speech to ES. This finding agrees with previous work
suggesting that talker normalization processes might actually be related
to more general auditory processing (Laing, Liu, Lotto, & Holt, 2012). It
thus appears that attentional processes depending on parietal areas, and
auditory feature analysis depending on temporal sources, are common

Table 6
TANCOVA windows showing interactions between WM and target type for
Experiment 2. There were no main effects of WM.

Factor Window Start Window End Length

d' * target type 122 137 15
d' * target type 180 219 39
d' * target type 273 293 20

3 There were no windows with main effects of WM on scalp topography. Main
effects of target type extended from approximately 100 to 700 ms, and thus a)
did not provide discrete N1 and P2 time windows, and b) overlapped with the
WM interactions.
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features between ES processing in sentence context and processing of a
changing talker.

Unlike experiment 1, there was no evidence that different sources
were active in the N1 and P2 time windows in the current experiment.
Whereas in experiment 1, parietal sources were implicated during the
N1, and temporal sources were implicated during the P2, both sources
were implicated at both time points in the current experiment. There
are two reasons this might be the case. The first reason follows from the
fact that ES are likely more difficult to process in sentence context than
a talker change, as they are more different from speech, as well as less
commonly encountered in sentence context in everyday life. Due to
increased difficulty, perhaps different processing stages for ES take
longer, and therefore overlap temporally, leading to both sources being
active at both time points. Another possibility is that temporal smearing
occurred due to averaging. There is a much closer temporal corre-
spondence between two different talkers saying the same words, than
there is between the words and matched environmental sounds. For
example, it takes much longer to recognize the sound of a toilet flushing
than it does to say the word “toilet”. In this case, the time course of
parietal and temporal source activation could be the same for ES and
talker switches, but the temporal resolution is not good enough to de-
tect this for the ES stimuli. Future experiments could use ES that are
closely matched in length to their corresponding words in order to
circumvent this issue.

4. General discussion

Talker normalization is a process, thought to require WM-dependent
deployment of perceptual attention, that allows listeners to understand
different talkers despite wide variability in acoustic characteristics of
different talkers’ speech (Nusbaum & Morin, 1992). Previous research
has found N1 ERP amplitude increases in response to a change in talker,
suggesting that attention is reallocated to features of the new talker’s
speech in order to aid talker normalization (Kaganovich et al., 2006).
Moreover, fMRI studies have implicated parietal and temporal regions
in processing changes in talker (Wong et al., 2004), suggesting that
talker normalization involves both deployment of attention and
acoustic feature analysis of the new talker’s speech.

However, the time course of activity in the temporal and parietal
talker normalization sources has not yet been identified. Moreover,
talker normalization effects on the N1 ERP have not been examined in
an EEG context with source analysis. Although attentional effects, as
well as effects related to auditory feature analysis, have been connected
to the P2 ERP, there remain few studies examining the P2 in talker
normalization. Finally, the role of WM in these neural mechanisms of
talker normalization has yet to be elucidated.

We used high-density EEG to examine scalp topographies in re-
sponse to a change in talker. We hypothesized that we would find
amplitude increases in the N1 and P2 ERPs when the talker switched,

consistent with a reallocation of attention to new acoustic features.
Unfortunately, while scalp topographies differed significantly between
same- and different-talker responses during N1 and P2 time windows
(Fig. 1b,c), no clear N1 and P2 peaks were obtained, either on an
average or an individual level (Fig. 1a,d), with the exception of one
participant (individual traces can be found at https://osf.io/x8dau).
The weakness and variability of these potentials made it impossible to
perform simple amplitude or latency analyses. Though we had reason to
expect that an acoustic source change might elicit a strong N1-P2
complex (as it does for sentences terminating in environmental
sounds—Uddin, Heald, Van Hedger, & Nusbaum, et al. 2018), it is
possible that the lack of a silent interval before the words of interest is
responsible. For example, the talker normalization experiments by
Zhang et al. (2013) employed a jittered silent interval of 300–500 ms
before the last word. Further, the presence of background noise reduces
the amplitude of the N1 and P2 in response to speech (Koerner & Zhang,
2015), suggesting that acoustic continuity (as was the case in our sti-
muli) may ablate these ERPs. Finally, the relative similarity of the
words said by the two different talkers may have reduced the N1 and P2
to be undetectable when compared to the environmental sounds ex-
periment, in which the sentence endings are conceptually quite distinct
from the preceding speech. However, the existence of significant dif-
ferences in scalp topography between the same- and different-talker
conditions provides evidence that talker normalization processes do
affect neural processing in the N1 and P2 time windows. Moreover, we
were still able to perform source analyses on topographies during N1
and P2 time windows to assess the relationship of these topographies to
the talker normalization sources in Wong et al. (2004). We also assessed
the effects of WM on the scalp topographies in the same- and different-
talker conditions.

With respect to WM, we hypothesized that individual WM capacity
would predict differences in processing between the two talkers. As
higher individual working memory capacity has been associated with
greater attentional modulation of the N1 and P2 ERPs (Giuliano et al.,
2014), we expected an interaction between talker and WM capacity.
Given work highlighting active cognitive processes in speech percep-
tion (Heald & Nusbaum, 2014a), regardless of changes in talker, we also
reasoned that we might find main effects of WM rather than interac-
tions. This latter hypothesis was supported by main effects of WM on
scalp topography in both N1 and P2 time windows (Table 3). This
finding supports the idea that similar attentional mechanisms are re-
cruited to process a consistent talker and a changing talker, but that
these mechanisms are recruited to a greater extent for high-WM parti-
cipants.

Finally, from one theoretic perspective, WM may not affect the
deployment of attention, but rather attention acts as a “gatekeeper”,
focusing on the aspects of the input that are going to be retained in WM
(cf. Awh, Vogel, & Oh, 2006). In this view, WM might be related to
talker normalization and attention via a gating mechanism, in which
attention focuses on aspects of the new talker’s speech that need to be
manipulated later in WM in order to produce understanding. Interest-
ingly, the present results appear to refute this idea; if the deployment of
attention itself is not influenced by WM, we would likely not see main
effects of WM on ERPs (namely the N1 and P2) that are known to be
modulated by attention. Thus, it seems most likely that WM is med-
iating attentional mechanisms which, in turn, are influencing the N1
and P2.

With regards to the source analyses, we expected to find that par-
ietal sources (previously implicated in attention; Wong et al., 2004)
were more active in response to a changing talker, due to attentional
mechanisms involved in focusing on the idiosyncratic characteristics of
the new talker. As both the N1 and P2 have been found to be modulated
by attention, we hypothesized that these differences in parietal acti-
vation would be found in both N1 and P2 time windows. We did not
find significant differences in the fit of the parietal source dipole models
to same- vs. different-talker scalp topographies in either the N1 or P2

Table 7
Average RV for ES vs. spoken words in different time windows, with parietal,
temporal, and “both” models tested separately. Bold italics denotes the win-
dows where the RV for ES and words was significantly different after control-
ling for multiple comparisons. Note that a lower RV indicates more variance ex-
plained by the model and thus indicates a better fit.

Time win Model ES 95% CI Word 95% CI

122–137 ms parietal 49.78 42.81 – 56.74 63.35 54.90 – 71.79
temporal 38.50 32.40 – 44.60 51.96 43.27 – 60.66
both 32.08 26.17 – 37.99 44.98 36.53 – 53.43

180–219 ms parietal 50.99 43.79 – 58.19 63.30 55.26 – 71.34
temporal 37.77 31.23 – 44.32 51.28 41.82 – 60.74
both 31.56 24.72 – 38.40 44.49 35.56 – 53.42

273–293 ms parietal 52.33 45.12 – 59.55 64.35 55.21 – 73.48
temporal 39.25 32.11 – 46.38 53.73 43.13 – 64.33
both 31.20 24.72 – 37.68 46.80 36.76 – 56.83
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time window (Table 5). However, in the N1 time window, we found a
significant correlation between individual WM capacity and the dif-
ference in how well the parietal model fit responses to the two different
talkers (Fig. 2). Specifically, we found that for high-WM participants,
the parietal sources explained responses to the changing talker better
than they explained responses to the consistent talker. The effect was
reversed for low-WM participants, such that the parietal sources better
explained responses to the consistent talker. This effect was confined to
the N1 window. These results suggest that WM modulates the re-
allocation of attention that is necessary in talker normalization. While
high-WM participants were presumably able to recruit parietal areas to
focus attention on relevant characteristics of the new talker, low-WM
participants might not have been able to identify the right talker
characteristics to aid processing. Instead, their attention may have been
more effectively captured by the familiar speech patterns of the same
talker who produced the sentence stems. While previous studies have
examined the role of WM in talker normalization primarily by placing
participants under a WM load (e.g., Nusbaum & Morin, 1992), the
present study shows a neural effect of individual WM capacity on talker
normalization processes. Such differences may be too small to pick up
in a behavioral response time paradigm, but they support the inter-
pretation that talker normalization requires WM-mediated attention
reallocation. Finally, we did not find any such effects for the parietal
sources during the P2 time window. These results suggest that, at least
during fluent speech, WM-mediated attention effects in talker normal-
ization are confined to the N1 time window, i.e. earlier in the proces-
sing stream.

As the temporal sources identified by Wong et al. (2004) are related
to speech processing and, more generally, processing of complex au-
ditory stimuli (e.g., Rauschecker & Scott, 2009), we hypothesized that
these sources might be more active for a new talker during the P2 time
window. This is because the P2 has previously been implicated in the
analysis of acoustic features (Näätänen & Winkler, 1999). This is indeed
what we found; during the P2 time window, Wong et al.’s (2004)
temporal sources better explained scalp topographies in response to a
changing talker (as opposed to a consistent talker; Table 5). This sug-
gests that a change in talker elicits heightened auditory processing,
likely due to acoustic feature analysis of the new talker’s speech. Taken
together with the results from the N1 time window, these results sug-
gest a time course in which parietal sources modulate attention in a
WM-dependent manner during the N1. After this, temporal areas are
recruited for a more fine-grained analysis of the acoustic input during
the P2.

In our second experiment, we hypothesized that neural mechanisms
underlying talker normalization would also mediate the processing of
environmental sounds in spoken sentence context. Such a finding would
be in line with previous work suggesting that talker normalization
(Laing et al., 2012), and language understanding in general (Uddin,
Heald, Van Hedger, & Klos, et al., 2018, Uddin, Heald, Van Hedger, &
Nusbaum, et al. 2018), rely on cognitive-general mechanisms that also
facilitate other types of auditory processing. However, it is possible
that, due to the specialization of language, the adjustment to acoustic
change is dealt with differently for speech than for other auditory sti-
muli. Indeed, talker normalization is only rarely presented as an in-
stance of a more general acoustic change adaptation phenomenon (a
notable exception being Laing et al., 2012). If this is the case, we might
expect that understanding an ES in sentence context might draw on
different resources, such as cortical areas specialized for environmental
sounds (cf. Leech & Saygin, 2011), rather than WM-mediated atten-
tional reallocation.

The first analysis to test this hypothesis was a TANCOVA analysis of
scalp topographies including a between-subjects factor of WM. We ex-
pected to find main effects of WM, or interactions between target type
(ES vs. speech) and WM. This is because processing an ES in sentence
context should require recruitment of attention, which, as in talker
normalization, should rely on WM. There is precedent for this idea; the

use of WM in the deployment of attention is thought to be a domain-
general resource, not a speech-specific one (Engle, 2002; Giuliano et al.,
2014). Therefore, it is reasonable to expect WM-mediated attentional
differences in ES processing as well as in talker normalization. This
hypothesis was supported by significant interactions between WM and
target type in time windows encompassing the N1 and P2 ERPs
(Table 6). Such interactions show that differences in ES and word
processing in sentence context depend on WM capacity.

There is one important difference between the WM results in ex-
periments 1 and 2. In experiment 1, there were main effects of WM on
scalp topography in the N1 and P2 time windows (Table 3). In ex-
periment 2, however, there were interactions between WM and target
type (Table 6). This likely arises from the fact that while words are
fluent and highly practiced, ES are more difficult to understand, and
likely involve a higher level of ambiguity with regards to their identity
(cf. Uddin, Heald, Van Hedger, & Klos, et al., 2018). This difference in
difficulty might lead to a greater load being placed on WM during ES
processing, as greater ambiguity likely leads to the maintenance of
more possible interpretations in WM (cf. Nusbaum & Schwab, 1986).
This would lead to a large WM load difference between ES and spoken
words. Such a large WM load could accentuate WM-capacity-based
processing differences between ES and words. This could lead to an
interaction between target type and WM capacity, rather than the main
effect that is found in the talker normalization experiment. Importantly,
according to these explanations, there are not qualitatively different
processes happening for ES and words. Instead, WM load likely in-
creases in a graded fashion, such that it is lowest in processing a con-
sistent talker, in the middle for processing a changing talker, and
highest for processing ES.

For experiment 2, we also hypothesized that ES processing in sen-
tence context would activate the same cortical areas as talker normal-
ization, as it should involve both heightened attention reallocation and
acoustic feature analysis in conjunction with WM to resolve ambiguity
of interpretation. This hypothesis was supported by the source analysis;
we found significant differences between ES and words with regards to
the fit of dipole models including both parietal and temporal sources.
Namely, models including both temporal and parietal sources better
explained the variance for scalp topographies elicited by ES (when
compared to topographies elicited by speech). These differences ex-
tended through both N1 and P2 time windows (Table 7). It therefore
appears that, like talker normalization, a switch from language to ES
involves attention reallocation and acoustic feature analysis mediated
by the parietal and temporal cortical areas identified by Wong et al.
(2004).

Whereas in experiment 1, effects related to parietal sources were
largely confined to the N1 time window, and those related to temporal
sources were largely confined to the P2, both sources were implicated
in both time periods for experiment 2. As discussed in Section 3.4, this
is likely due to temporal smearing as a result of increased stimulus
length variability in experiment 2. Future work might examine ES and
words that are matched in length; perhaps such experiments will reveal
the parietal-then-temporal time course that we observed for a change in
talker.

5. Conclusions

In summary, our analyses extend work by Wong et al. (2004) by
indicating that in processing a change in talker, parietal sources are
active in a WM-dependent manner in the N1 time window, and audi-
tory-processing-related temporal sources are recruited later in the P2
time window. These results suggest a talker normalization processing
stream that first involves WM recruitment to reallocate attention to-
wards relevant features of the new talker’s speech. These attentional
processes involve parietal cortical areas, and happen during the N1
ERP. These effects then appear to be followed by auditory processing
mechanisms that are not WM-dependent, which are mediated by
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temporal cortical areas, and occur during the P2. Further work should
be done to determine whether this processing stream is unique to talker
normalization in fluent speech, or whether it also underlies talker
normalization in vowel, syllable, or single word stimuli.

Furthermore, our results from a new analysis of previously collected
ES data provide a novel link between the talker switch cost and pro-
cessing of meaningful auditory non-speech stimuli: they suggest that
mechanisms utilized in processing a switch in talkers may be utilized in
understanding non-speech in the context of speech. These results sug-
gest that the same cognitive-general mechanisms underlie the ability to
quickly process both ES and words in sentence context, in turn sup-
porting the idea that talker normalization and speech-to-nonspeech
adaptation are two sides of the same coin.
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