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A B S T R A C T   

Statistical learning is an ability that allows individuals to effortlessly extract patterns from the environment, such 
as sound patterns in speech. Some prior evidence suggests that statistical learning operates more robustly for 
speech compared to non-speech stimuli, supporting the idea that humans are predisposed to learn language. 
However, any apparent statistical learning advantage for speech could be driven by signal acoustics, rather than 
the subjective perception per se of sounds as speech. To resolve this issue, the current study assessed whether 
there is a statistical learning advantage for ambiguous sounds that are subjectively perceived as speech-like 
compared to the same sounds perceived as non-speech, thereby controlling for acoustic features. We first 
induced participants to perceive sine-wave speech (SWS)—a degraded form of speech not immediately 
perceptible as speech—as either speech or non-speech. After this induction phase, participants were exposed to a 
continuous stream of repeating trisyllabic nonsense words, composed of SWS syllables, and then completed an 
explicit familiarity rating task and an implicit target detection task to assess learning. Critically, participants 
showed robust and equivalent performance on both measures, regardless of their subjective speech perception. In 
contrast, participants who perceived the SWS syllables as more speech-like showed better detection of individual 
syllables embedded in speech streams. These results suggest that speech perception facilitates processing of 
individual sounds, but not the ability to extract patterns across sounds. Our findings suggest that statistical 
learning is not influenced by the perceived linguistic relevance of sounds, and that it may be conceptualized 
largely as an automatic, stimulus-driven mechanism.   

1. Introduction 

Statistical learning, our ability to become sensitive to patterns in the 
environment, has provided an important mechanistic explanation for 
language acquisition since its initial documentation in the context of 
speech segmentation (Saffran, Aslin, & Newport, 1996). In this study, 
infants were presented with a continuous stream of trisyllabic nonsense 
words, with no pauses or other acoustic cues to mark word boundaries. 
Thus, the probabilities of syllables co-occurring with one another pro-
vided the only indication of where individual words started and ended 
within the stream. After listening to the stream, infants were able to 
successfully discriminate between words and foil items through their 
looking time behaviour, providing evidence that they had extracted the 
statistical information in the stream to discover the embedded words. 

Since this seminal study, subsequent research has shown that 

statistical learning is present across many domains outside of language 
(e.g., Conway & Christiansen, 2005; Fiser & Aslin, 2001; Saffran, 
Johnson, Aslin, & Newport, 1999; Van Hedger et al., 2022). In one such 
study, conducted by Saffran et al. (1999), participants were exposed to a 
stream of six “tone words,” each of which consisted of a sequence of 
three pure tones. On a subsequent two-alternative forced-choice recog-
nition task, participants succeeded in discriminating between tone 
words and foil sequences, providing a clear demonstration that statis-
tical learning also operates across non-linguistic auditory stimuli – that 
is, auditory stimuli that lack a clear communicative purpose. Subsequent 
research has found that listeners can also extract patterns embedded in 
non-linguistic noises (Gebhart, Newport, & Aslin, 2009), everyday 
environmental sounds (Siegelman, Bogaerts, Elazar, Arciuli, & Frost, 
2018), tactile sequences (Conway & Christiansen, 2005), visual stimuli 
(e.g., Bulf, Johnson, & Valenza, 2011; Fiser & Aslin, 2001; Kirkham, 
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Slemmer, & Johnson, 2002), and multimodal contexts (Mitchel et al., 
2014; Seitz, Kim, Van Wassenhove, & Shams, 2007). Further, statistical 
learning is present not only in infants but also in older children and 
adults (e.g., Moreau et al., 2022; Raviv & Arnon, 2018; Saffran, New-
port, & Aslin, 1996; Saffran, Newport, Aslin, Tunick, & Barrueco, 1997), 
as well as in nonhuman animals, including dogs (Boros et al., 2021) and 
cotton-top taramins (Hauser, Newport, & Aslin, 2001). These observa-
tions have led to a general consensus that statistical learning is not a 
“special” language-specific mechanism, but is domain-general in that it 
is present across modalities, domains, and even species (Aslin, 2017). 

However, while statistical learning may be considered domain- 
general in that it is present in many learning contexts, it shows impor-
tant differences depending on stimulus modality and learning domains, 
suggesting that it may not be a truly unitary mechanism (Frost et al., 
2015, 2019). For example, an early study found an advantage for sta-
tistical learning of non-linguistic tones, as compared to tactile and visual 
stimuli, which persisted even after controlling for low-level perceptual 
differences between stimuli (Conway & Christiansen, 2005). Another 
study reported that changes in presentation rate have opposite effects on 
auditory and visual statistical learning: auditory statistical learning 
benefits from faster presentation rates, whereas visual statistical 
learning benefits from slower rates (Emberson, Conway, & Christiansen, 
2011). In addition, different types of statistical learning follow different 
developmental trajectories; statistical learning for speech sounds is 
stable from childhood into adulthood; in contrast, statistical learning 
improves with age for visual stimuli and non-linguistic tones (Arciuli & 
Simpson, 2011; Moreau et al., 2022; Raviv & Arnon, 2018; Schlichting, 
Guarino, Schapiro, Turk-Browne, & Preston, 2017; Shufaniya & Arnon, 
2018; for review, Forest, Schlichting, Duncan, & Finn, 2023). 

These findings, which indicate that statistical learning is not equiv-
alent across modalities, are not easily accommodated within frame-
works that treat statistical learning as a single unitary mechanism. 
Further evidence against a unitary view of statistical learning comes 
from low interindividual correlations in statistical learning performance 
across modalities and stimulus materials (Siegelman, Bogaerts, Chris-
tiansen, & Frost, 2017; Siegelman & Frost, 2015). While an individual’s 
statistical learning performance within a given domain is relatively 
stable, as assessed by test-retest reliability, performance on one task 
does not predict performance on a parallel tasks in a different domain (e. 
g. syllables to visual shapes; Siegelman & Frost, 2015). Taken together, 
these results suggest that there are nonoverlapping mechanisms sup-
porting statistical learning abilities in different domains, supporting a 
“pluralist” view of statistical learning (Frost et al., 2015, 2019). Ac-
cording to this viewpoint, statistical learning is supported not only by 
domain-general mechanisms (e.g. Batterink et al., 2019; Conway, 2020; 
Covington, Brown-Schmidt, & Duff, 2018; Schapiro, Gregory, Landau, 
McCloskey, & Turk-Browne, 2014), but also by modality-specific 
mechanisms that are united by similar computational principles. These 
modality-specific mechanisms operate within distinct networks and are 
governed by different constraints, depending on task domain and mo-
dality (Conway, 2020; Frost et al., 2015, 2019). 

1.1. Is speech a privileged target for statistical learning? 

The consensus that there are important differences in statistical 
learning as a function of learning domain raises a more specific question 
of whether statistical learning operates differently—and perhaps more 
robustly—for speech than non-speech. Human infants prefer to listen to 
speech compared to other auditory stimuli (Shultz & Vouloumanos, 
2010), and neuroimaging studies in adults have found greater activation 
in left auditory cortex for speech compared to other sounds (Binder 
et al., 2000; Narain et al., 2003; Parviainen, Helenius, & Salmelin, 2005; 
Scott, Blank, Rosen, & Wise, 2000; Vouloumanos, Kiehl, Werker, & 
Liddle, 2001). These results are in line with the general idea that speech 
is “special,” engaging unique neural and cognitive mechanisms not 
engaged by other auditory stimuli (Belin, Zatorre, Lafaille, Ahad, & Pike, 

2000; Liberman, 1982; Marno et al., 2015; Moore, 2000). 
Infant studies of artificial grammar rule learning also support this 

notion, suggesting that babies more readily extract simple grammar 
rules (e.g., “AAB” or “ABB” rules) from speech than from non-speech 
auditory stimuli, such as tones or animal sounds (Dawson & Gerken, 
2009; Marcus, Fernandes, & Johnson, 2007). A number of theoretical 
hypotheses (which are not mutually exclusive) have been proposed to 
account for this speech advantage in rule learning, including that speech 
(1) better captures and holds infants’ attention (Shultz & Vouloumanos, 
2010; Vouloumanos & Werker, 2004), (2) represents a communicative 
signal (Ferguson & Lew-Williams, 2016; Rabagliati, Senghas, Johnson, 
& Marcus, 2012), (3) is more familiar than other signals to infants, 
which facilitates learning (Saffran, Pollak, Seibel, & Shkolnik, 2007; 
Thiessen, 2012), and/or (4) may be processed by specific mechanisms 
that have been tuned to speech as humans evolved the capacity for 
language (Rabagliati et al., 2012; Marcus & Rabagliati, 2008, as cited in 
Ferguson & Lew-Williams, 2016). By extension, speech could also 
represent a privileged target for the statistical learning of embedded 
units in continuous sound sequences, in infants and adults alike. 

Current evidence on whether there is indeed a statistical learning 
advantage for speech sounds is conflicting. A recent study by Ordin, 
Polyanskaya, and Samuel (2021) supports the idea that there is a speech 
advantage in statistical learning. Participants were presented with 
embedded triplet sequences that were fully linguistic in nature (made up 
of natural syllables), semi-linguistic (made up of syllables that contained 
atypical acoustic cues), and non-linguistic (made up of environmental 
sounds such as animal noises and footsteps), and then asked to make 
old/new judgments for triplets from the sequences and foils. Perfor-
mance was highest in the syllable condition compared to the semi- 
linguistic and non-linguistic conditions, providing support for a speech 
advantage for statistical learning. This result also converges with rule 
learning studies in infants, which have found a general advantage for 
speech stimuli over non-speech stimuli, as described above (e.g., Daw-
son & Gerken, 2009; Marcus et al., 2007). 

However, not all studies point to a clear linguistic advantage for 
statistical learning. In the previously described “tone words” study by 
Saffran et al. (1999), both age groups successfully segmented the tone 
stream, and no significant differences were found between their per-
formance on the tone version and the syllable version of the task from a 
previous study (Saffran, Newport, & Aslin, 1996). Similarly, another 
study by Saffran (2002) presented adults and children with linguistic or 
non-linguistic auditory “sentences,” made up of nonsense words for the 
linguistic group (e.g. kiff flor lum dupp) and sequences of sounds such as 
bells, chimes, and drums for the non-linguistic group. Both groups 
learned successfully and again, no significant differences were found 
between conditions. Finally, a more recent study by Siegelman et al. 
(2018) compared statistical learning of syllables and everyday envi-
ronmental sounds. Overall performance was similar between the two 
conditions, again suggesting that statistical learning occurs with similar 
efficacy for speech and non-speech sounds. 

Yet, even in situations where overall learning is comparable for 
linguistic and non-linguistic items, there is evidence that linguistic items 
still might exhibit distinct patterns of learning. For example, more 
nuanced analyses of the Siegelman et al. (2018) data revealed that in-
dividual test items in the syllable condition showed much lower internal 
consistently than in the sound condition. Additional experiments indi-
cated that participants’ performance was influenced by the degree to 
which test items corresponded to the phonotactics of their own native 
language of Hebrew (see also Elazar et al., 2022). These results suggest 
that learners’ prior knowledge and expectations may critically impact 
statistical learning of linguistically-relevant speech sounds, an effect 
that is less pronounced for non-linguistic sounds (though see Van 
Hedger et al., 2022 for evidence of effects of prior knowledge on sta-
tistical learning of instrument notes). Thus, even in the absence of 
overall performance differences, there may be qualitative differences in 
how statistical learning operates for speech versus non-speech sounds, 

S.J. Sweet et al.                                                                                                                                                                                                                                 



Cognition 242 (2024) 105649

3

particularly with respect to how learning interacts with other cognitive 
factors. 

1.2. Differences between speech and non-speech sounds 

Part of the difficulty in assessing whether there may be a statistical 
learning advantage for speech is that speech sounds and non-speech 
sounds, such as tones and environmental noises, differ in many ways. 
Previous learning studies comparing speech and non-speech have used 
different types of artificial languages, different syllable inventories, and 
many different types of non-linguistic sounds (e.g. Marcus et al., 2007; 
Ordin et al., 2021; Saffran, 2002; Saffran et al., 1999; Siegelman et al., 
2018). Thus, conflicting results across studies could—in principle—be at 
least partially attributable to surface features of the learning materials. 
For example, speech sounds and other natural auditory stimuli such as 
musical instruments and everyday object sounds differ in fundamental 
frequency, timbre, aperiodicity, spectral variability, spectral envelope, 
and temporal envelope (Ogg & Slevc, 2019). Any number of these low- 
level acoustic features that differ between speech and non-linguistic 
stimuli may influence perception, ease of encoding, and consequently 
statistical learning performance. In other words, statistical learning 
differences between speech and non-speech—when observed—could 
reflect signal-driven differences in lower-level processes, such as the 
perception of individual items, rather than statistical learning per se. 

A study by Thiessen (2012) highlights the importance of considering 
acoustic features when comparing statistical learning of speech versus 
non-speech sounds. The authors of this study reasoned that speech 
contains more redundant cues to an abstract rule than are typically 
available in non-linguistic stimuli, and that such redundancy may 
facilitate rule learning. For example, a string such as “ga ti ga” in-
stantiates the “ABA” rule at multiple levels: at the syllable level, at the 
individual phoneme level (both the initial consonant and final vowel 
differentiate the A and B elements) and at the level of phonetic features 
(e.g., voicing). To test the importance of redundancy, the authors pre-
sented infants with syllable sequences that contained reduced redun-
dancy, in which only the vowels, rather than both vowels and 
consonants, signaled the underlying rule (e.g. “ba bi ba” rather than “ga 
ti ga”). When redundancy was reduced, infants’ rule learning was 
impaired, suggesting that speech may allow for easier learning than non- 
linguistic stimuli at least in part because of the redundant information in 
the acoustic signal. These results underscore the importance of ac-
counting for acoustic differences in comparisons of statistical learning 
between speech and non-speech stimuli. 

In addition to their acoustic differences, speech sounds also differ 
from non-speech sounds in terms of their subjective value or perceived 
relevance to the listener. In contrast to tones or environmental noises, 
speech sounds are a linguistically relevant signal and serve a critical 
communicative purpose. This communicative value could in part 
explain why speech captures infants’ attention to a greater degree than 
non-speech (e.g., Vouloumanos, Hauser, Werker, & Martin, 2010; 
Vouloumanos & Werker, 2004, 2007), or why auditory-relevant regions 
within the left temporal lobe are more strongly activated for speech than 
non-speech (Belin et al., 2000; Binder et al., 2000; Dick et al., 2007; 
Scott et al., 2000), although here too acoustic differences cannot be 
ruled out. To our knowledge, no previous studies have directly examined 
whether the communicative value of speech per se may play a role in 
potential statistical learning differences between speech and non-speech 
sounds. 

In the current study, we tested the hypothesis that speech may serve 
as a privileged target for statistical learning due to its subjective value as a 
communicative signal, over and above any effects of acoustic differences 
between speech and non-speech. To address this hypothesis, we lever-
aged “sine-wave speech” (SWS), a manipulation that allows for 
comparing the processing of identical acoustic stimuli that may be 
perceived from highly speech-like to un-speechlike. SWS is a degraded 
form of natural speech consisting of time-varying sine waves modelling 

formant frequencies, with fewer sine waves corresponding to greater 
degradation of the signal (Remez, Rubin, Pisoni, & Carrell, 1981). This 
degraded audio retains the phonetic properties of the original speech, 
but typically fails to be perceived as phonetic by naïve listeners, who 
may experience it as a sequence of whistles, chirps, and other types of 
“science fiction” sounds. SWS lacks many of the acoustic features that 
make speech sound natural, such as a fundamental frequency. However, 
it can still be perceived as speech if instructions to attend to the speech- 
like qualities of the stimuli, or information about its true nature, are 
given. For example, participants may suddenly perceive SWS as speech if 
they are played the intact, original audio immediately prior to the SWS 
version. Notably, once participants are induced into perceiving the SWS 
as speech, there is no known method to revert them back into hearing it 
as non-speech (Silva & Bellini-Leite, 2020). SWS thus provides a tool for 
manipulating listeners’ subjective, top-down perception of a signal as 
speech versus non-speech, while holding the physical stimuli constant. 
Essentially, this approach can be used to isolate speech-specific 
perceptual effects on statistical learning, independent of any acoustic 
differences. 

1.3. The current study 

The aim of the current experiment was to investigate whether sta-
tistical learning operates differently for sounds perceived as more 
speech-like compared to sounds perceived as non-speech in the absence 
of acoustic differences between stimuli. Participants initially completed 
an induction task, in which we attempted to induce them to perceive 
SWS syllables as either speech or non-speech sounds. They were then 
exposed to a continuous stream of repeating trisyllabic “words” 
composed of SWS syllables, and then completed two behavioural tasks 
to measure their statistical learning of the words: (1) an explicit famil-
iarity rating task, in which participants rated their familiarity with the 
original words and two types of foil items and (2) a target detection task, 
which requires participants to make speeded responses to embedded 
syllables within continuous speech streams. This task does not require 
the conscious retrieval of previously learned information, providing an 
implicit measure of learning (Batterink et al., 2015). Finally, to deter-
mine each participants’ subjective perception of the SWS, participants 
indicated on a 1–10 scale how speech-like they perceived the stimuli to 
be, and then transcribed SWS syllables and full SWS sentences. 

As described previously, both low-level acoustic differences as well 
as high-level differences in perceived linguistic relevance could 
contribute to differences in statistical learning for speech versus non- 
speech sounds. Our experimental design allows us to isolate the role of 
subjective speech perception in statistical learning, independently of 
acoustic factors. If the subjective perception of sounds as linguistically 
relevant is an important factor for statistical learning, we would expect 
that learners who perceive the ambiguous SWS stimuli as speech-like to 
a greater degree to show better statistical learning performance on both 
measures. In contrast, if the primary factor driving differences in sta-
tistical learning of speech versus non-speech is the acoustic signal, we 
would expect no relationship between statistical learning performance 
and listeners’ perception of the SWS stimuli, given that the stimuli 
themselves are identical. As we were interested in both positive and null 
findings, all analyses were substantiated with a Bayesian approach. 

2. Method 

2.1. Participants 

A total of 200 participants were recruited from online participant 
recruitment platforms Prolific (n = 65; Palan & Schitter, 2018) and 
Amazon Mechanical Turk through CloudResearch (n = 135; Litman, 
Robinson, & Abberbock, 2017). Amazon Mechanical Turk participants 
were initially recruited; however, because a substantial proportion 
failed the study’s attention check (as described in detail later), we 
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recruited a second group of participants from Prolific in hopes of 
obtaining participants who would perform better on this attention 
check. All Amazon Mechanical Turk recruited participants were 
CloudResearch-approved, indicating that they had been screened and 
shown proof that they engage in tasks in an attentive manner. All Prolific 
participants had approval rates between 90 and 100%, indicating that a 
high percentage of their submissions for other research studies had been 
approved by the researchers. All participants reported English as their 
primary language, were above 17 years old, and had normal or 
corrected-to-normal hearing. Of the 200 participants, 100 were assigned 
to the speech induction condition, while the remaining 100 were 
assigned to the non-speech induction. Participants were financially 
compensated for their time. 

Of the 200 participants, a total of 73 participants were excluded from 
analysis; 43 were excluded due to failing to pass both attention checks 
embedded in the exposure stream (as described in greater detail later); 
23 because their data failed to save to our servers; and 3 due to making 
no responses during the target detection task. Finally, 1 participant was 
excluded due to not having normal or corrected-to-normal hearing, and 
3 participants were excluded due to failing to meet the inclusion criteria 
of having English as their primary language, based off their answers to 
the post-study survey. Thus, final analyses comprise data from 71 par-
ticipants in the speech induction (SI) condition (mean age = 40.2 y; SD 
= 11.8 y; 37 men; 34 women), and 56 participants in the non-speech 
induction (NSI) condition (mean age = 39.3 y; SD = 12.0 y; 29 men; 
27 women). 

2.2. Stimuli 

The experimental stimuli consisted of 12 syllables recorded by a male 
native English speaker, taken from Batterink and Paller (2019), in 
addition to 24 corresponding SWS manipulated forms of these syllables, 
comprised of single-sine wave (highly degraded) and three-sine wave 
(moderately degraded) versions of each of the original syllables. Each 
syllable sound file was 300 ms. Manipulated forms of the syllables were 
created in Praat (Boersma & Weenink, 2022) using a script by Darwin 
(2003). The unmanipulated (original) forms and single-sine wave 
(highly degraded) forms of the syllables were used only as primes in the 
induction task. The three-sine wave (moderately degraded) forms 
comprised the key experimental stimuli that were used throughout all 
statistical learning tasks, as well as the syllable transcription task. 

The 12 three-sine wave syllables were combined to create 4 trisyl-
labic nonsense words (e.g. tafuko, rigimi, rupuni, fitisu). To form the 
continuous artificial speech stream, these trisyllabic nonsense words 
were concatenated pseudorandomly, without pauses between words, 
with the constraint that the same word never occurred consecutively. 
Thus, the transitional probabilities of neighbouring syllables were 1.0 
within a word, and 0.33 across word boundaries. The stream consisted of 
600 syllables (200 words) presented at a rate of 300 ms per syllable (i.e. 
3.3 Hz), with each of the 4 words repeated 50 times, for a total duration 
of 3 min. To control for potential syllable-specific idiosyncrasies, the 
syllables in a given word were each assigned to the first, second, and 
third position across three conditions, counterbalanced across partici-
pants (Language A: tafuko, rigimi, rupuni, fitisu; Language B: fukota, 
gimiri, puniru, tisufi; Language C: kotafu, mirigi, nirupu, sufiti). The 
experimental script was programmed in jsPsych (de Leeuw, Gilbert, & 
Luchterhandt, 2023). 

2.3. Procedure 

All tasks were performed online on the participants’ own laptops or 
personal computers. To minimize distractions during the study, partic-
ipants were asked to complete the tasks in a quiet listening environment 
and to use headphones for the entire duration of the session. Each ses-
sion began with a volume adjustment task during which participants 
listened to a thirty-second noise and adjusted their sound volume to a 

comfortable level. 
The experimental procedure is summarized in Fig. 1, and consisted of 

four main phases, as described below. Participants completed one of two 
different versions of the induction task depending on whether they were 
assigned to the SI or NSI condition. All other tasks, as well as the key 
SWS stimuli, were identical between groups. 

2.3.1. Induction task 
This task was designed to induce participants to perceive the key 

SWS stimuli as either speech (SI condition) or as non-speech (NSI con-
dition). In this task, participants were presented with “matched pairs” of 
syllables and instructed to intentionally learn the syllable pairings. The 
SI participants were told that they would be listening to speech syllables, 
and that each syllable would be followed by a distorted version of itself. 
They were then presented with syllable pairs comprised of the intact, 
non-manipulated version of each syllable (e.g. “fu”) followed by the 
target SWS version of the same syllable (e.g. the three-sine-wave version 
of “fu”), in order to draw their attention to the speech-like qualities of 
the SWS syllables. In contrast, the NSI participants were told that they 
would be listening to robotic noises artificially generated by a computer. 
The NSI participants were then presented with syllable pairs consisting 
of the highly degraded version of each syllable (e.g. the single-sine wave 
version of “fu”) followed by the target SWS version. 

The task was made up of an initial training phase, followed by a test 
phase. In the training phase, participants were simply presented with 
two repetitions of each of the 12 pairs (24 total trials) and were 
instructed to pay careful attention as they would be tested on the pairs 
later. Next, participants completed 40 test trials, comprised of 36 
correctly paired syllables and 4 mismatched pairs. On each test trial, 
participants were asked to judge whether the two sounds made up a 
correctly matched pair by pressing one of two corresponding keys. 

2.3.2. Exposure stream 
Next, participants were presented with the three-minute continuous 

stream of nonsense words, made up of the same key SWS syllables for 
both induction groups. They were instructed to pay attention to the 
stream, and were told they may be tested on their knowledge of the 
stream later in the study. To ensure participant engagement in the online 
testing environment, two attention checks were embedded within the 
exposure stream, consisting of 4 s pauses inserted randomly at two of 
nine preselected times in the stream. Prior to beginning the task, par-
ticipants were instructed to listen for pauses and to press the spacebar 
key within 4 s whenever they heard a pause. Failure to detect both 
pauses resulted in participant exclusion from subsequent analyses. 

2.3.3. Statistical learning tasks 
Next, participants completed two behavioural tests of statistical 

learning, in the order indicated below. 

2.3.3.1. Familiarity rating task. This task is designed to assess explicit 
memory of the nonsense words (e.g. Batterink & Paller, 2017, 2019). On 
each trial, participants listened to a syllable triplet made of the key SWS 
syllables, and rated how familiar it sounded to them on a scale from 1 
(very unfamiliar) to 4 (very familiar). A total of 12 trials were presented, 
with 4 trials consisting of words from the exposure stream (e.g. tafuko), 
4 trials consisting of part-words (i.e. a syllable pair from a word in the 
exposure stream combined with an additional syllable from a different 
word, e.g. rufuko), and 4 trials consisting of non-words (syllables from 
the stream that had never occurred together, e.g. rupufu). Evidence of 
explicit memory for the words would be provided by higher ratings to 
words, followed by part-words, with non-words rated as least familiar. 

2.3.3.2. Target detection task. This task measures participants’ response 
times to target syllables embedded within shortened versions of the 
speech stream, and can reveal statistical learning in the form of 
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prediction effects, in the absence of explicit memory or intentional 
retrieval of the learned words (Batterink et al., 2015). On each trial, 
participants were presented with a target SWS syllable; they were 
allowed to replay this target syllable as many times as they wished. They 
then listened to a shortened version of the exposure stream (~14.5 s), 
containing the four trisyllabic nonsense words concatenated together 
four times each in pseudorandom order (48 syllables total), in the same 
manner as the Exposure stream. Participants were instructed to press the 
spacebar each time they heard that target syllable as quickly and 
accurately as possible by pressing the spacebar. 

Each of the 12 SWS syllables acted as a target three times overall, 
yielding a total of 36 streams. Across all streams, this yielded a total of 
144 targets, 48 within each syllable position (1st, 2nd, 3rd). Stream 
order was randomized for every participant. Successful learning of the 
speech stream would be reflected by faster reaction times to target syl-
lables that occurred in the medial or final position of a trisyllabic word 
relative to syllables that occurred in the initial position, due to the op-
portunity to predict the target (Batterink et al., 2015, 2019; Batterink & 
Paller, 2017). 

2.3.4. Speech perception task 
This task was designed to examine participants’ perception and 

comprehension of the key SWS stimuli, and contained three parts. As 
illustrated in Fig. 1, this was always the final task in the experiment, in 
order to avoid suggesting the communicative nature of SWS to partici-
pants in the NSI group. 

2.3.4.1. Overall subjective speech perception rating. Participants were 
presented with an open-response textbox and asked to describe the 
sounds that they had heard in the study. Using a slider, they were then 
asked to rate the extent to which they had heard the SWS as speech-like, 
with the scale ranging from 1 (I never heard the sounds as speech) to 10 (I 
always heard the sounds as speech). 

2.3.4.2. Syllable transcription. Participants then listened to each of the 
12 key SWS syllables one at a time and were asked whether they thought 
it sounded like speech (yes/no response). If a participant indicated that 
they heard a syllable as speech, they were then asked to transcribe the 
syllable to the best of their ability by typing their response into an open- 
response textbox. 

2.3.4.3. Sentence transcription. As a test of generalized SWS perception, 
participants listened to 10 SWS sentences from the Harvard sentences 
database (IEEE, 1969) and transcribed each one to the best of their 
ability. An example of one of the sentences is, “The glow deepened in the 
eyes of the sweet girl.” Participants were instructed to spell each word as 
accurately as possible. 

2.3.5. Survey 
Finally, participants were redirected to a Qualtrics survey containing 

basic demographic questions about age, gender identity, and language 
fluency. 

2.4. Statistical analyses 

For all t-tests, the Student’s t-test was utilized unless the assumption 
of equal variances was violated. Welch’s unequal variances t-tests were 

instead used whenever Levene’s Test was significant. 
Bayes Factors were calculated for each test, using the default prior 

provided by JASP. This prior uses a Cauchy distribution, centered 
around 0, with a width parameter of 0.707. The reported Bayes Factors 
(BF10) represent how likely the alternative hypothesis is relative to the 
null hypothesis; values above 1 indicate evidence supporting the alter-
native hypothesis, whereas values below 1 provide evidence supporting 
the null hypothesis over the alternative hypothesis. As an example, a 
BF10 of 4 indicates that, given the data, the alternative hypothesis is four 
times likelier than the null hypothesis. In contrast, a BF10 of 0.25 would 
indicate that the alternative hypothesis is one-fourth as likely as the null 
hypothesis. Conventional means of interpreting the relative strength of 
Bayes Factors regard BF10 = 3–10 as moderate evidence, such that a BF10 
of 4 suggests moderate evidence for the alternative hypothesis over the 
null hypothesis (Schmalz, Biurrun Manresa, & Zhang, 2023). Bayes 
Factors can also be reported using BF01, the inverse of BF10, which 
presents the likelihood of the null hypothesis relative to the alternative 
hypothesis. Thus, a BF01 of 4 indicates that the null hypothesis is four 
times likelier than the alternative hypothesis. BF10 values are reported 
for each test in this study; however, for any tests that result in null 
findings, BF01 is also reported for ease of interpretation. 

2.4.1. Induction task 
Each participant’s accuracy on the matched pairs test was calculated. 

Additionally, as there were many more “match” trials than “mismatch” 
trials, we also computed d’ scores as a bias-free measure of participants’ 
sensitivity to the presence of a match. D′ was computed as the difference 
between the z-transforms of participants’ hit rate (i.e. the proportion of 
matched trials that they correctly identified as matching) and false 
alarm rate (the proportion of mismatched trials that they incorrectly 
identified as matching) in the task. 

2.4.2. Statistical learning tasks 
For all analyses of the statistical learning tasks, Greenhouse–Geisser 

corrections were reported for factors with more than two levels. 

2.4.2.1. Familiarity task. Average familiarity ratings were computed for 
each word category (Word, Partword, Nonword) and entered into a 2 ×
3 mixed effects ANOVA with induction condition (speech induced, non- 
speech induced) as a between-subjects factor and word category (non- 
word, part-word, word) as a within-subjects factor. 

Additionally, for subsequent correlational analyses, “familiarity 
rating scores” (Batterink & Paller, 2017, 2019) were calculated by 
subtracting the average of a participants’ rating of partwords and non-
words from their average rating of a word. Perfect sensitivity to words 
over foils on this measure would be a score of 3, with any positive value 
suggestive of learning, as this would reflect higher scores for words 
compared to both pseudo- and non-words. 

2.4.2.2. Target detection task. Following the inclusion criteria of previ-
ous studies, responses that occurred within 1200 ms following target 
onset were considered valid hits (Batterink & Paller, 2017, 2019). All 
other responses were considered false alarms. 

2.4.2.2.1. Detection score. For each participant, we first calculated 
the number of targets that were correctly detected and the total number 
of false alarms. We then computed an overall “detection score,” which 
represents a conservative estimate of a participant’s sensitivity to the 

Fig. 1. A summary of the experimental procedure. The induction task in the speech induced condition consisted of judging whether pairs of intact syllables and 
moderately degraded syllables matched. The induction task in the non-speech induced condition consisted of judging whether pairs of moderately degraded and 
heavily degraded syllables matched. Participants were exposed to 3 min of repeating nonsense words composed of the key SWS syllables. To measure learning, 
participants then completed a familiarity rating task, in which they rated the familiarity of words and foils, and a target detection task, in which they responded each 
time they detected a target syllable in a continuous stream consisting of the nonsense words. Finally, for each of the 12 key SWS syllables, participants were asked to 
indicate how speech-like they thought they were, and then transcribed the SWS syllables and sentences to the best of their ability. Task order was identical for all 
participants. 
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targets in the stream, computed as the overall number of hits divided by 
the overall number of false alarms (Number of Hits/Number of False 
Alarms). Given that the “target response” window (4 targets × 1200 ms 
= 4800 ms) for each stream was half the length of the “false alarm” 
windows (total stream length of 14,400 ms – “target response” length of 
4800 ms = 9600 ms), we reasoned that any score >0.5 would provide 
evidence of above-chance detection performance (with 0.5 indicating 
that hits occurred half as frequently as false alarms, as would be ex-
pected if responses were distributed randomly across the stream, 
without regard for the actual target locations). In other words, a 
detection score of >0.5 would indicate that participant’s responses were 
more likely to occur within a “target response” window than a “false 
alarm” window, providing evidence of target detection at above-chance 
levels. 

2.4.2.2.2. Reaction time. In addition to already-reported exclusions 
(see Section 2.1), 3 additional participants who only responded to initial 
targets were excluded from the RT analysis, as their mean response times 
could not be computed for second and third position targets. Further-
more, participants with a detection score of 0.5 or below were also 
excluded from this analysis (n = 32). We reasoned that if a participant is 
unable to detect the syllables at an above-chance level, any differences 
in their RTs cannot be considered a valid measure of statistical learning. 
To summarize, 35 additional participants were excluded from this 
analysis, yielding a final n of 92 participants. 52 of these participants 
completed the speech induction (mean age = 40.0 y, SD = 11.5 y; 28 
men; 24 women), and the remaining 40 were from the NSI group (mean 
age = 39.7 y, SD = 13.1 y; 19 men; 21 women). For thorough reporting, 
a parallel analysis that also includes data from participants who scored 
below chance on detection can be found in Supplementary Materials (n 
= 124). 

For each participant, mean RTs for detected targets were calculated 
for each target position (initial, medial, final). Mean RTs were then 
entered into a 2 × 3 repeated-measures ANOVA with induction group as 
the between-subject factor and target position (initial, medial, final) as 
the within-subject factor. In addition, to quantify statistical learning 
performance using a single metric while controlling for individual dif-
ferences in baseline response times, a “RT prediction score” was 
computed by subtracting the average RT for the final syllable position 
from the average RT for the initial syllable position and dividing it by the 
average RT for the initial syllable position [(RT1-RT3)/RT1; Batterink & 
Paller, 2019]. This calculation adjusts for potential differences in base-
line RTs between individuals, allowing us to measure statistical learning 
across individuals with different RT baselines. 

2.4.3. Speech perception tasks 

2.4.3.1. Syllable transcription. Scoring for this task was done by allo-
cating 1 point for each syllable that was fully correctly transcribed (with 
alternative spellings such as “mee” or “me” designated as correct), and 
0.5 points for each syllable that was partially correct, with either the 
consonant or vowel transcribed correctly (e.g. typing “mee” when the 
SWS syllable being played is “gee”). Average accuracy across the 12 total 
syllables in the task was then computed for each participant. 

2.4.3.2. Sentence transcription. Each SWS sentence contained 5 key-
words (e.g. in the sentence “Pluck the bright rose without leaves” the 
keywords would be “pluck,” “bright,” “rose,” “without,” and “leaves”). 
While participants wrote out the entire sentence, their scores were 
calculated as the proportion of correctly transcribed keywords. Mis-
spelled words were marked as incorrect. 

3. Results 

We first report the results from the induction task. Following this, we 
then characterize participants’ perception of the key SWS stimuli, as 

assessed through our three speech perception tasks (Fig. 1). Although 
these speech perception tasks were completed at the end of the session, 
we report these results second, as they are needed to understand the 
subsequent statistical learning analyses. We then turn to our main set of 
results, which concerns performance on our two measures of statistical 
learning—the familiarity rating and the target detection tasks—and how 
performance on these tasks relates to perception of SWS stimuli. 

3.1. Induction task 

Participants generally performed well on the matched pairs test, with 
an average accuracy rate of 90.7% (SD = 8.1%). Not surprisingly, given 
that they were presented with non-degraded syllable primes, speech 
induced (SI) participants outperformed non-speech induced (NSI) par-
ticipants on this task (SI: mean = 94.9%; SD = 5.2%; NSI: mean =
85.4%; SD = 8.1%; t(88.96) = − 7.64, p < .001, d = − 1.40; BF10 = 9.79 
× 109). 

The average d’ was 2.33 (SD = 1.05), with SI participants also out-
performing NSI participants on this measure (SI: mean = 2.93; SD =
0.82; NSI: mean = 1.58; SD = 0.79; t(125) = − 9.39, p < .001, d = − 1.68; 
BF10 = 1.27 × 1013). 

3.2. Speech perception tasks 

3.2.1. Overall subjective speech perception rating 
Reponses on the scale, ranging from 1 to 10, showed that SI partic-

ipants (M = 6.37, SD = 2.32) rated the SWS as sounding significantly 
more speech-like overall than the NSI participants (M = 5.38, SD =
2.79), t(106.71) = − 2.14, p = .035, d = − 0.39; BF10 = 1.62. Nonethe-
less, there was considerable overlap in the scores, such that some NSI 
participants perceived the stimuli to sound more speech-like, while 
some SI participants perceived the stimuli to not sound very speech-like. 
The distribution of participant responses on the scale are presented in 
Fig. 2A. 

3.2.2. Syllable transcription 
As expected, participants in the SI group (M = 53.8%, SD = 28.3%) 

judged a significantly higher percentage of SWS syllables to be speech- 
like compared to the NSI participants (M = 35.7%, SD = 29.2%), t 
(125) = − 3.52, p < .001, d = − 0.63; BF10 = 44.24. Additionally, SI 
participants (M = 29.5%, SD = 18.3%) also correctly transcribed a 
significantly larger proportion of the 12 SWS syllables than the NSI 
participants (M = 11.5%, SD = 11.2%), t(118.36) = − 6.82, p < .001, d 
= − 1.19; BF10 = 4.34 × 106 (see Fig. 2B). 

3.2.3. Sentence transcription 
Participants correctly transcribed 48.4% of the keywords in total (SD 

= 21.4%). 
Somewhat unexpectedly, there was no significant difference in the 

keyword transcription accuracy between SI participants (M = 49.4%, 
SD = 22.2%) and NSI participants (M = 47.0%, SD = 20.5%), t(125) =
− 0.64, p = .521, d = − 0.12; BF10 = 0.23 [BF01 = 4.35]. This suggests 
that the speech induction training on individual syllables did not 
generalize to novel sentences. However, across all participants, there 
was a significant positive correlation between accuracy on the syllable 
transcription task and sentence transcription task, r(125) = 0.38, p <
.001; BF10 = 1867.35 (see Fig. 3), suggesting that performance on these 
two tasks reflects a common ability. 

3.3. Statistical learning tasks 

As just described, while the two induction groups showed significant 
differences on self-reported subjective speech perception and on SWS 
syllable transcription accuracy, there was considerable overlap between 
the groups on these measures. In addition, there were no group differ-
ences on the sentence transcription task. These results indicate that our 
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speech perception manipulation only partially altered participants’ 
perception of the key SWS syllables, rather than producing a dramatic 
transformation of participants’ percepts. Thus, as a further test of the 
relationship between statistical learning and speech perception, we 
examined correlations between participants’ accuracy on the SWS syl-
lable transcription task—taking this as a measure of speech percep-
tion—and their statistical learning performance. Hence, in the following 
section, for both our measures of statistical learning, we report (1) 

differences in performance between our two a priori defined groups and 
(2) correlations between accuracy on the syllable transcription task and 
statistical learning performance. 

3.3.1. Familiarity task 
As expected, across both induction groups, words were rated as the 

most familiar, followed by part-words, with non-words rated as the least 
familiar, leading to a significant effect of word type, F(1.98,248.18) =

Fig. 2. (A) The distribution of participant responses on the subjective speech perception scale. The error bars represent the standard error of the mean. (B) Par-
ticipants’ accuracy in syllable transcription task. The error bars represent the standard error of the mean. *p < .05; ***p < .001. 

S.J. Sweet et al.                                                                                                                                                                                                                                 



Cognition 242 (2024) 105649

9

18.00, p < .001, η2p = 0.13; BF10 = 2.48 × 105 (see Fig. 4A). 
Supporting the hypothesis that statistical learning operates in a 

similar manner across stimuli perceived as linguistically-relevant and 
irrelevant, performance on the familiarity rating task was not signifi-
cantly different between the two induction groups (Main Effect of In-
duction: F(1,125) = 6.45 × 10− 3, p = .936, η2p = 5.16 × 10− 5; BF10 =

0.22 [BF01 = 4.54]; Word Type x Induction: F(1.98,248.18) = 0.34, p =
.714, η2p = 0.0027; BF10 = 0.07 [BF01 = 14.3]). 

Further, there was no significant correlation between participants’ 
syllable transcription accuracy and their familiarity rating scores, r 
(125) = 0.09, p = .34, with the Bayes Factor indicating moderate evi-
dence (Schmalz et al., 2023) for the null hypothesis of no relation be-
tween these two measures (BF10 = 0.18 [BF01 = 5.55]; see Fig. 4B). This 
result indicates that more accurate perception of the stimuli as syllables 
did not lead to better performance on the familiarity measure. 

3.3.2. Target detection task 

3.3.2.1. Overall detection rate. Participants correctly responded to 
67.4% (SD = 20.0%) of the targets on average and made an average of 
148.7 false alarms total (SD = 101.2). Accuracy rate was relatively low 
and false alarms were relatively high compared to previous versions of 
this task (e.g. Batterink et al., 2015; Batterink & Paller, 2017, 2019). 
This relatively poor performance may be attributed to the manipulated 
nature of the syllables, which made them more difficult to identify. 
Nonetheless, participants performed significantly above chance, as 
assessed by the detection score (M = 0.98, SD = 0.92; t(126) = 5.91, p <
.001, d = 0.52; chance is 0.5 on this measure), with no significant dif-
ference in performance between the SI participants (M = 1.05, SD =
0.95) and NSI participants (M = 0.90, SD = 0.89), t(125) = − 0.93, p =
.355, d = − 0.17; BF10 = 0.28 [BF01 = 3.57]. 

Interestingly, there was a significant positive correlation between the 
Detection Measure values and syllable transcription accuracy, r(125) =
0.29, p = .001; BF10 = 22.39, as presented in Fig. 5. This result indicates 
that participants who more accurately perceived the stimuli as syllables 
were also better able to detect them in the continuous speech sequences. 

3.3.2.2. Reaction time. As expected, across both groups, RTs were the 
fastest for final-position syllables, second fastest for medial-position 
syllables, and slowest for initial-position syllables, as shown in 
Fig. 6A, leading to a significant effect of syllable position, F 
(1.68,150.76) = 61.69, p < .001, η2p = 0.41; BF10 = 4.17 × 1018. 
Notably, there was no significant difference in the RTs between induc-
tion groups, either overall or as a function of syllable position (Main 
Effect of Induction: F(1,90) = 0.06, p = .802, η2p = 7.00 × 10− 4; BF10 =

0.24 [BF01 = 4.17]; Position x Induction: F(1.68,150.76) = 1.14, p =
.315, η2p = 0.01; BF10 = 0.19 [BF01 = 5.26]). 

Additionally, there was no significant correlation between RT pre-
diction effect and syllable transcription accuracy, r(90) = 0.12, p = .253; 
BF10 = 0.25 [BF01 = 4.00], as shown in Fig. 6B. This suggests more 
accurately perceiving the SWS stimuli as syllables did not lead to an 
enhanced ability to predict final position syllables. For a summary of the 
Bayes Factors for the study’s statistical learning measures, see Table 1. 

While the above analysis excludes participants who failed to detect 
syllables at above-chance levels, we also report results from the full 
sample (see Supplementary Materials). We note that the overall pattern 
of findings is largely similar between the two analyses. 

4. Discussion 

In the current study, we examined whether statistical learning occurs 
more robustly for sounds subjectively perceived as speech relative to 
those perceived as non-speech, independently of stimulus acoustics. The 
key novel aspect of the current study was the use of SWS to eliminate 
acoustic differences between stimuli perceived linguistically versus non- 
linguistically. Overall, we found that statistical learning operates simi-
larly for stimuli, regardless of the degree to which they are perceived as 
linguistically-relevant. Participants who were induced into hearing 
syllables as speech-like did not show any significant differences in per-
formance on our two statistical learning measures compared to partic-
ipants induced into hearing the syllables as non-linguistic sounds. In 
addition, participants’ ability to linguistically label individual SWS 
syllables did not predict their statistical learning performance. Taken 
together, these results provide no strong evidence of a statistical 

Fig. 3. The correlation between the percentage of SWS sentences and the key SWS syllables that participants transcribed accurately (r = 0.38, p < .001).  
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learning advantage for sounds perceived as more speech-like, instead 
suggesting that statistical learning occurs indiscriminately across audi-
tory stimuli, regardless of their linguistic relevance. 

More specifically, on the familiarity rating task, we observed no 
significant difference in ratings between the speech induced and non- 
speech induced group, as well as no significant correlation between 
participants’ accuracy in transcribing the SWS syllables and their fa-
miliarity rating score. Similarly, on the target detection task, there was 
no significant difference in the RTs between the induction groups, nor 
was there a significant correlation between participants’ SWS syllable 
transcription accuracy and the magnitude of their RT prediction effect. 
Thus, taken together, our results suggest that statistical learning oper-
ates largely similarly across physically identical auditory stimuli, 
regardless of participants’ perception of the stimuli as more or less 
speech-like. 

Importantly, we found that the speech induced (SI) group was better 
at identifying the SWS syllables by their linguistic labels than the non- 
speech induced (NSI) group, as demonstrated by significantly higher 

accuracy on the syllable transcription task (30% accuracy for the SI 
group versus 12% for the NSI). We also found that participants in the SI 
group rated the syllables as subjectively more speech-like than partici-
pants in the NSI group, although the difference in subjective ratings 
were small. These findings provide a key manipulation check and indi-
cate that our induction task did produce differences in the subjective 
perception of SWS syllables between the two groups. However, we note 
that our induction task did not produce a dramatic perceptual trans-
formation of the syllables, as can be found when sentences are used as 
stimuli (Davis & Johnsrude, 2007; Remez et al., 1981), and was also 
limited in its generalizability, with no effect on participants’ ability to 
transcribe full sentences. We return to this general point in the Limita-
tions section. 

Previous findings in the literature have suggested that statistical 
learning shows important differences across domains and may be gov-
erned by modality- and domain-specific constraints (e.g., Conway, 2020; 
Frost et al., 2015; Siegelman et al., 2017; Siegelman & Frost, 2015; Van 
Hedger et al., 2022). For example, several findings point to the idea that 

Fig. 4. (A) Participants’ ratings of triplet familiarity from the familiarity rating task. The error bars represent the standard error of the mean. (B) The correlation 
between participants’ familiarity rating score and the percentage of key SWS syllables that they transcribed accurately (r = 0.09, p = .34). 
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statistical learning is influenced by the shared resemblance between 
novel words in the speech stream and existing words in learners’ native 
language, with words that share native language phonotactic patterns 
being more easily segmented and/or subsequently recognized (Elazar 
et al., 2022; Finn & Hudson Kam, 2008; Siegelman et al., 2018). Our 
results provide initial evidence that domain-specific constraints for 
statistical learning are at least partially attributable to sensory-level 
processes, and not necessarily to higher-level cognitive mechanisms 
related to the conceptual categorization of incoming stimuli. For 
example, networks in auditory cortex may be better equipped to process 
and encode incoming novel words that have high acoustic overlap with 
existing words in the learner’s lexicon, which in turn could facilitate 
binding between syllables and lead to observed “linguistic entrench-
ment” effects (Siegelman et al., 2018). In contrast, the judged linguistic 
relevance of an ambiguous signal may be a later-occurring, downstream 
process that does not directly impact statistical learning. 

Our approach differed from several previous statistical learning 

studies in that we did not directly compare learning of speech versus 
non-speech stimuli (cf. Hoch, Tyler, & Tillmann, 2013; Marcus et al., 
2007; Ordin et al., 2021; Saffran, 2002; Saffran et al., 1999; Siegelman 
et al., 2018), which differ in both low-level acoustic features and in 
communicative relevance. Instead, we assessed the statistical learning of 
acoustically identical ambiguous stimuli that differed in the degree to 
which they were subjectively perceived as speech, allowing us to address 
the more specific question of whether the subjective linguistic value 
(Berent, de la Cruz-Pavía, Brentari, & Gervain, 2021; Rabagliati, Fer-
guson, & Lew-Williams, 2018) of auditory stimuli—in and of 
itself—influences statistical learning. To our knowledge, no previous 
study has directly examined this question in adults. However, there is 
some relevant prior work in infants, which has examined whether the 
meaningfulness or communicative relevance of stimuli increases infants’ 
success in learning abstract repetition rules (such as AAB or ABA). 
Ferguson and Lew-Williams (2016) presented infants with a video prime 
in which tones were embedded in a natural conversation between two 

Fig. 5. (A) Participants’ detection score values on the target detection task (chance is 0.5). The error bars represent the standard error of the mean. (B) The cor-
relation between participants’ Detection Measure values on the target detection task and the percentage of key SWS syllables that they transcribed accurately (r =
0.29, p = .001). 
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actors, thereby inducing the infants to believe that tones are a 
communicative signal. In a subsequent rule learning phase, infants who 
were communicatively primed successfully learned abstract rules from 

tones, whereas unprimed infants failed to show learning. This finding 
suggests that infants learn better from stimuli that are communicatively 
relevant. Supporting this conclusion, a recent meta-analysis of 20 papers 
(Rabagliati et al., 2018) found that infants are better able to learn ab-
stract repetition rules from stimuli that are communicatively or 
ecologically meaningful—such as spoken syllables, communicatively 
primed tones, or natural categories such as dogs or faces—than mean-
ingless stimuli such as geometric shapes or tones. In a follow-up 
experiment designed to directly test this idea, Rabagliati et al. (2018) 
had infants view either a prime video that portrayed gestures as 
communicative and meaningful, or a control video, and then exposed 
them to sequences of gestures following an ABB or ABA pattern. Again, 
as in Ferguson and Lew-Williams (2016), only infants primed to view 
gestures as a communicative signal displayed evidence of rule learning. 
Altogether, these studies suggest that the communicative status of a 
stimulus enhances abstract rule learning in infants. 

In contrast to this general finding in infants, the present results fail to 
support the idea that the perceived linguistic relevance of auditory 

Fig. 6. (A) Participants’ average reaction times for each of the syllable positions in the target detection task. The error bars represent the standard error of the mean. 
(B) The correlation between participants’ RT prediction effect and the percentage of key SWS syllables that they transcribed accurately (r = 0.12, p = .253). 

Table 1 
Summary of Bayes Factor results for statistical learning performance.  

Task BF01 Strength of evidence in favour of null 

Familiarity Task   
Main Effect of Induction 4.54 Moderate 
Word Type × Induction 14.29 Strong 
Correlation 5.55 Moderate 

Target Detection Task   
Main Effect of Induction 4.17 Moderate 
Position × Induction 5.26 Moderate 
Correlation 4.00 Moderate 

Note. Moderate evidence: BF01 = 3–10. Strong evidence: BF01 = 10–30. The null 
hypothesis here indicates no impact of speech perception on statistical learning 
performance. 
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stimuli influences or enhances statistical learning in adults. This diver-
gence could potentially be attributed to any number of factors that differ 
between prior work in infants and the current study, including the 
population under investigation (adults versus infants), the type of 
learning (abstract grammatical rule learning versus statistical learning 
of embedded words in continuous speech), and/or the experimental 
manipulation used to bias the linguistic relevance of the stimuli. For 
example, it may be the case that infants show larger differences in 
learning between communicative and noncommunicative signals 
compared to adults, in line with the idea that infancy represents a crit-
ical period for language acquisition, during which the brain is highly 
tuned to speech and other communicative signals (Vouloumanos et al., 
2010; Vouloumanos & Werker, 2004, 2007; Werker & Hensch, 2015). 
Another possibility is that findings from abstract grammatical rule 
learning (e.g., learning of rules such as AAB or ABA) are not directly 
generalizable to the type of statistical learning under investigation in the 
current study. Rule learning involves extracting an abstract rule and 
generalizing to novel instances, whereas statistical learning involves 
extracting repeating, item-based regularities from unsegmented input, 
without a generalization component. While these two types of learning 
appear to be closely related in certain ways (Aslin & Newport, 2012), 
they may be influenced by different factors and operate under different 
sets of constraints (Endress & Bonatti, 2007; Endress & Mehler, 2009; 
Peña, Bonatti, Nespor, & Mehler, 2002; Thiessen, 2017). 

Finally, we must also consider the possibility that our SWS manip-
ulation did not produce sufficiently diverse percepts of the identical 
stimuli across individual participants to produce robust differences in 
statistical learning. Most prior work investigating the processing and 
intelligibility of SWS have used meaningful sentences (Corcoran et al., 
2023; Khoshkhoo, Leonard, Mesgarani, & Chang, 2018; Remez et al., 
1981). In contrast, we applied the sine-wave manipulation to isolated 
syllables, such that participants’ perception of the SWS stimuli could not 
benefit from top-down prediction provided by semantic context. Thus, it 
is conceivable that even participants who achieved high scores on syl-
lable transcription accuracy may not have experienced a clear speech 
percept for each syllable. However, a critical point arguing against this 
possibility is that we did find a significant and highly robust correlation 
between participants’ individual syllable transcription accuracy and 
overall detection performance for individual syllables in the target 
detection task. Based on this result, we can conclude that participants 
experienced real, meaningful variability in their perceptions of the SWS 
stimuli that was, at minimum, sufficient to robustly predict performance 
on a separate task. That we did not find similar robust correlations be-
tween syllable identification and statistical learning performance sug-
gests that any speech-perception advantage in statistical learning—if it 
exists at all—is likely to be very small. 

The finding that syllable comprehension accuracy predicted overall 
syllable detection performance in the target detection task is also 
interesting in and of itself. This result suggests that ability to perceive 
ambiguous auditory stimuli as more speech-like and the ability to 
correctly assign linguistic labels to those stimuli facilitate the online 
identification of the ambiguous stimuli under challenging circum-
stances, i.e., when the target stimulus is embedded within a continuous 
stream of similar-sounding sounds. An analogous finding has been re-
ported in the visual domain using a visual search paradigm (Klemfuss, 
Prinzmetal, & Ivry, 2012; Lupyan & Spivey, 2008). Participants in these 
studies were presented with arrays of rotated numbers (“2” and “5”), 
and were asked to indicate for each trial whether the display was ho-
mogenous or contained an oddball. Interestingly, participants who were 
given the linguistic labels or who spontaneously noticed that the shapes 
were rotated numbers were faster to respond to the arrays compared to 
participants who were told that the stimuli were abstract shapes. One 
proposed explanation for this result is that the top-down effects of a 
linguistic cue may sharpen visual feature detectors, with feedback 
connections from linguistic representations providing a mechanism for 
biasing or amplifying activity in perceptual detectors associated with 

those representations (Lupyan & Spivey, 2008). An alternative expla-
nation is that the benefit of linguistic cues on stimulus identification may 
occur because language provides a “ready form of efficient coding,” 
thereby reducing the burden on working memory (Klemfuss et al., 
2012). Similar mechanisms operating at both the perceptual and post- 
perceptual level could also explain the current findings. The ability to 
perceptually transform a degraded, ambiguous target stimulus into a 
verbalizable syllable (e.g. “ba”) may have sharpened auditory feature 
detectors for that sound signal, and may also have facilitated the 
maintenance of the target stimulus in working memory during the 
subsequent stream presentation. 

4.1. Limitations 

As previously alluded to, a limitation in this study was that the 
speech induction task had only a moderate impact on participants’ 
overall subjective speech perception. As shown in Fig. 2A, the speech 
induction manipulation did not cleanly divide participants into two 
groups, as some speech-induced participants indicated that they 
perceived the sounds as relatively un-speechlike, and vice-versa for the 
non-speech induced participants. In addition, the speech induced 
group’s transcription accuracy of the SWS syllables—while better than 
the non-speech induced group’s—was still fairly low (approximately 
30% accuracy). An ideal induction manipulation would have led all the 
speech-induced participants to accurately perceive the SWS stimuli as 
speech, and the non-speech induced participants to report hearing the 
stimuli as non-speech, as was our original intention. This would have 
allowed for a cleaner comparison between participants speech-induced 
and non-speech-induced participants, capitalizing on the benefits of an 
experimental design using random assignment. Because our induction 
did not result in a clear division between groups, and to account for the 
continuous, non-binary nature of speech perception, we adopted a 
complementary approach that tested whether an individual’s syllable 
transcription accuracy predicted their statistical learning performance. 
However, with this approach there is a possibility that any correlations 
between transcription performance and statistical learning performance 
(should they be observed) could be inflated by unintended third vari-
ables, such as an individual’s general motivation or interest in the 
experimental tasks. Ultimately, we believe it would be challenging to 
design a perfectly effective speech induction task when using isolated 
syllables as SWS stimuli, given their processing cannot benefit from top- 
down lexical information, which plays an important role in the 
perceptual learning of distorted speech (Davis, Johnsrude, Hervais- 
Adelman, Taylor, & McGettigan, 2005). To further probe the role of 
linguistic relevance in statistical learning, future work could leverage 
other types of experimental manipulations, such as using priming videos 
to induce participants into believing that neutral stimuli are a commu-
nicative signal (e.g., Ferguson & Lew-Williams, 2016; Rabagliati et al., 
2018). 

Finally, while the current study demonstrates that overall statistical 
learning performance is similar as a function of listeners’ subjective 
speech perception, our study design does not allow us determine 
whether this equivalent performance is supported by a common un-
derlying mechanism or set of mechanisms, or by different mechanisms 
that depend on speech perception. For example, it is possible that trip-
lets perceived as nonspeech may be segmented and learned as holistic or 
gestalt-like units, whereas triplets perceived as speech may be learned 
by extracting sequential syllable patterns—pairs and then tri-
plets—unfolding over time. The theoretical possibility of different 
mechanisms varying by stimulus material is supported by findings by 
Siegelman et al. (2018), as previously mentioned in the Introduction. 
This study demonstrated similar overall levels of statistical performance 
for auditory non-verbal stimuli (everyday sounds) and syllables, which 
nonetheless belied important differences in the internal consistency of 
test items between conditions, reflecting different influences on per-
formance that vary by domain. Although we would consider that the 
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possibility of different mechanisms that are equally effective to not 
necessarily represent the most parsimonious explanation for the current 
data, the present study design cannot rule it out. Future studies could 
leverage approaches such as EEG or neuroimaging to examine this 
possibility directly. 

4.2. Conclusions 

In summary, our results provide evidence that statistical learning 
operates largely indiscriminately across auditory stimuli, regardless of 
the degree to which they are perceived linguistically. In contrast, lin-
guistic perception robustly improves the identification of individual 
target stimuli embedded in a continuous auditory sequence. These re-
sults generally support previous findings of similar statistical learning 
performance for speech stimuli and non-speech stimuli (Saffran, 2002; 
Saffran et al., 1999; Siegelman et al., 2018), and raise the possibility that 
previous demonstrations of the statistical learning advantage for verbal 
materials (e.g., Hoch et al., 2013; Ordin et al., 2021) may mainly be 
driven by acoustic differences between the classes of stimuli. These re-
sults contribute to the literature on domain-specific versus domain- 
general contributions to statistical learning, suggesting that statistical 
learning may be conceptualized as a largely bottom-up mechanism that 
undiscerningly captures regalities in input regardless of higher-level 
context. 
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